Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 14
Number of page(s) 9
DOI https://doi.org/10.1186/s41476-016-0016-6
Published online 20 September 2016
  1. Kervran Y, Sagazan OD, Crand S, et al.Microcrystalline silicon: Strain gauge and sensor arrays on flexible substrate for the measurement of high deformations. Sensors Actuators A Phys. (2015) 236, 1273–280. https://doi.org/10.1016/j.sna.2015.08.001 [CrossRef] [Google Scholar]
  2. Tiziani HJ, Pedrini G, From speckle pattern photography to digital holographic interferometry. Appl. Opt. (2013) 52, 130–44. https://doi.org/10.1364/AO.52.000030 [NASA ADS] [CrossRef] [Google Scholar]
  3. Gao Z, Deng Y, Duan Y, et al.Continual in-plane displacement measurement with temporal wavelet transform speckle pattern interferometry. Rev. Sci. Instrum. (2012) 83, 1015107. https://doi.org/10.1063/1.3675896 [Google Scholar]
  4. Shao X, Dai X, He X, Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation. Opt. Laser. Eng. (2015) 71, 9–19. https://doi.org/10.1016/j.optlaseng.2015.03.005 [NASA ADS] [CrossRef] [Google Scholar]
  5. Zhu R, Xie H, Tang M, et al.Reconstruction of planar periodic structures based on Fourier analysis of moiré patterns. Opt. Eng. (2015) 54, 4044102. https://doi.org/10.1117/1.OE.54.4.044102 [NASA ADS] [CrossRef] [Google Scholar]
  6. Pedrini G, Osten W, Time resolved digital holographic interferometry for investigations of dynamical events in mechanical components and biological tissues. Strain (2007) 43, 240–249. https://doi.org/10.1111/j.1475-1305.2007.00341.x [CrossRef] [Google Scholar]
  7. Solís SM, Santoyo FM, Hernández-Montes MS, 3D displacement measurements of the tympanic membrane with digital holographic interferometry. Opt. Express (2012) 20, 55613–5621. https://doi.org/10.1364/OE.20.005613 [CrossRef] [Google Scholar]
  8. Yang LX, Xie X, Zhu L, et al.Review of electronic speckle pattern interferometry (ESPI) for three dimensional displacement measurement, Chin. J. Mech. Eng. (2014) 27, 11–13. [Google Scholar]
  9. Yang LX, Zhang P, Liu S, et al.Measurement of strain distributions in mouse femora with 3D-digital speckle pattern interferometry, Opt. Laser. Eng. (2007) 45, 8843–851. https://doi.org/10.1016/j.optlaseng.2007.02.004 [NASA ADS] [CrossRef] [Google Scholar]
  10. Bhaduri B, Kothiyal MP, Mohan NK, A comparative study of phase-shifting algorithms in digital speckle pattern interferometry. Optik (2008) 119, 3147–152. https://doi.org/10.1016/j.ijleo.2006.07.014 [NASA ADS] [CrossRef] [Google Scholar]
  11. Bhaduri B, Mohan NK, Kothiyal MP, Digital speckle pattern interferometry using spatial phase shifting: influence of intensity and phase gradients, J. Mod. Opt. (2008) 55, 6861–876. https://doi.org/10.1080/09500340701504306 [NASA ADS] [CrossRef] [Google Scholar]
  12. Zhu L, Wang Y, Xu N, et al.Real-time monitoring of phase maps of digital shearography. Opt. Eng. (2013) 52, 10101902. https://doi.org/10.1117/1.OE.52.10.101902 [CrossRef] [Google Scholar]
  13. Alvarez AS, Ibarra MH, Santoyo FM, et al.Strain determination in bone sections with simultaneous 3D digital holographic interferometry. Opt. Laser. Eng. (2014) 57, 101–108. https://doi.org/10.1016/j.optlaseng.2014.01.022 [CrossRef] [Google Scholar]
  14. Wang Y, Sun J, Li J, et al.Synchronous measurement of three-dimensional deformations by multicamera digital speckle patterns interferometry. Opt. Eng. (2016) 55, 9091408. https://doi.org/10.1117/1.OE.55.9.091408 [NASA ADS] [CrossRef] [Google Scholar]
  15. Kulkarni R, Rastogi P, Multiple phase derivative estimation using autoregressive modeling in holographic interferometry. Meas. Sci. Technol. (2015) 26, 3035202. https://doi.org/10.1088/0957-0233/26/3/035202 [NASA ADS] [CrossRef] [Google Scholar]
  16. Tay CJ, Quan C, Chen W, Dynamic measurement by digital holographic interferometry based on complex phasor method. Opt. Laser Technol. (2009) 41, 2172–180. https://doi.org/10.1016/j.optlastec.2008.05.005 [NASA ADS] [CrossRef] [Google Scholar]
  17. Wu, S, Gao, X, Lv, Y, et al: Micro deformation measurement using temporal phase-shifting and spatial-carrier digital speckle pattern interferometry, SAE Technical Paper 2016-01-0415, (2016). doi:10.4271/2016-01-0415. [Google Scholar]
  18. Wu S, Zhu L, Feng Q, et al.Digital shearography with in situ phase shift calibration. Opt. Laser. Eng (2012) 50, 91260–1266. https://doi.org/10.1016/j.optlaseng.2012.03.011 [NASA ADS] [CrossRef] [Google Scholar]
  19. Xie X, Chen X, Li J, et al.Measurement of in-plane strain with dual beam spatial phase-shift digital shearography. Meas. Sci. Technol. (2015) 26, 11115202. https://doi.org/10.1088/0957-0233/26/11/115202 [NASA ADS] [CrossRef] [Google Scholar]
  20. Xie X, Xu N, Sun J, et al.Simultaneous measurement of deformation and the first derivative with spatial phase-shift digital shearography. Opt. Commun. (2013) 286, 277–281. https://doi.org/10.1016/j.optcom.2012.08.072 [NASA ADS] [CrossRef] [Google Scholar]
  21. Wu S, Zhu L, Pan S, et al.Spatiotemporal three-dimensional phase unwrapping in digital speckle pattern interferometry. Opt. Lett. (2016) 41, 51050–1053. https://doi.org/10.1364/OL.41.001050 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.