Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1186/s41476-016-0014-8 | |
Published online | 31 August 2016 |
- Chen F, Brown GM, Song M, Overview of three-dimensional shape measurement using optical methods. Opt. Eng. (2000) 39, 10–22. https://doi.org/10.1117/1.602438 [NASA ADS] [CrossRef] [Google Scholar]
- Hu Y, Xi J, Li E, Chicharo J, Yang Z, Three-dimensional profilometry based on shift estimation of projected fringe patterns. Appl. Optics (2006) 45, 678–687. https://doi.org/10.1364/AO.45.000678 [NASA ADS] [CrossRef] [Google Scholar]
- Takeda M, Mutoh K, Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Optics (1983) 22, 3977–3982. https://doi.org/10.1364/AO.22.003977 [NASA ADS] [CrossRef] [Google Scholar]
- Rajoub B, Lalor M, Burtom D, Karout S, A new model for measuring object shape using non-collimated fringe-pattern projections. J. Optics A: Pure Appl. Optics (2007) 9, S66–S75. https://doi.org/10.1088/1464-4258/9/6/S10 [NASA ADS] [CrossRef] [Google Scholar]
- Maurel A, Cobelli P, Pagneux V, Petitjeans P, Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry. Appl. Optics (2009) 48, 380–392. https://doi.org/10.1364/AO.48.000380 [NASA ADS] [CrossRef] [Google Scholar]
- Sansoni G, Carocci M, Rodella R, 3D vision based on the combination of gray code and phase shift light projection. Appl. Optics (1999) 38, 6565–6573. https://doi.org/10.1364/AO.38.006565 [NASA ADS] [CrossRef] [Google Scholar]
- Hu Q, Huang P, Fu Q, Chiang F, Calibration of a three-dimensional shape measurement system. Opt. Eng. (2003) 42, 487–493. https://doi.org/10.1117/1.1531977 [NASA ADS] [CrossRef] [Google Scholar]
- Du H, Wang Z, Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system. Opt. Letters (2007) 32, 2438–2440. https://doi.org/10.1364/OL.32.002438 [NASA ADS] [CrossRef] [Google Scholar]
- Da F, Gai S, Flexible three-dimensional technique based on a digital light processing projector. Appl. Optics (2008) 47, 377–385. https://doi.org/10.1364/AO.47.000377 [NASA ADS] [CrossRef] [Google Scholar]
- Huang L, Chua P, Asundi A, Least-squares calibration method for fringe projection profilometry considering camera lens distortion. Appl. Optics (2010) 49, 1539–1548. https://doi.org/10.1364/AO.49.001539 [NASA ADS] [CrossRef] [Google Scholar]
- Liu H, Su W, Reichard K, Yin S, Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement. Optics Commun (2003) 216, 65–80. https://doi.org/10.1016/S0030-4018(02)02290-3 [NASA ADS] [CrossRef] [Google Scholar]
- Guo H, He H, Yu Y, Chen M, Least-squares calibration method for fringe projection profilometry. Opt. Eng. (2005) 44, 033603. https://doi.org/10.1117/1.1871832 [NASA ADS] [CrossRef] [Google Scholar]
- Jia P, Kofman J, English C, Comparison of linear and nonlinear calibration methods for phase-measuring profilometry. Opt. Eng. (2007) 46, 043601. https://doi.org/10.1117/1.2721025 [NASA ADS] [CrossRef] [Google Scholar]
- Li W, Fang S, Duan S, 3D shape measurement based on structured light projection applying polynomial interpolation technique. Optik (2013) 124, 20–27. https://doi.org/10.1016/j.ijleo.2011.11.084 [NASA ADS] [CrossRef] [Google Scholar]
- Chung B, Park Y, Hybrid method for Phase-to-height relationship in 3D shape measurement using fringe pattern projection. J. Precision Eng. Manuf (2014) 15, 407–413. https://doi.org/10.1007/s12541-014-0351-8 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.