Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 10
Number of page(s) 6
DOI https://doi.org/10.1186/s41476-016-0012-x
Published online 25 July 2016
  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG, Optical coherence tomography. Science (1991) 254, 1178–1181. https://doi.org/10.1126/science.1957169 [CrossRef] [PubMed] [Google Scholar]
  2. Leitgeb R, Hitzenberger CK, Fercher AF, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express (2003) 11, 889–894. https://doi.org/10.1364/OE.11.000889 [NASA ADS] [CrossRef] [Google Scholar]
  3. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE, Improved signal-to noise ratio in spectral-domain compared with time domain optical coherence tomography. Opt. Lett. (2003) 28, 2067–2069. https://doi.org/10.1364/OL.28.002067 [NASA ADS] [CrossRef] [Google Scholar]
  4. Wang Z, Yuan Z, Wang H, Pan Y, Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique. Opt. Express (2006) 14, 167014. https://doi.org/10.1364/OE.14.007014 [CrossRef] [Google Scholar]
  5. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. (2002) 7, 457–463. https://doi.org/10.1117/1.1482379 [NASA ADS] [CrossRef] [Google Scholar]
  6. Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS, Ultrahigh resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express (2004) 12, 2404–2422. https://doi.org/10.1364/OPEX.12.002404 [NASA ADS] [CrossRef] [Google Scholar]
  7. Nassif NA, et al.In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express (2004) 12, 3367. https://doi.org/10.1364/OPEX.12.000367 [NASA ADS] [CrossRef] [Google Scholar]
  8. Chinn SR, Swanson EA, Fujimoto JG, Optical coherence tomography using a frequency tunable optical source. Opt. Lett. (1997) 22, 340–342. https://doi.org/10.1364/OL.22.000340 [NASA ADS] [CrossRef] [Google Scholar]
  9. Lexer F, Hitzenberger CK, Fercher AF, Kulhavy M, Wavelength-tuning interferometry of intraocular distances. Appl. Opt. (1997) 36, 6548–6553. https://doi.org/10.1364/AO.36.006548 [NASA ADS] [CrossRef] [Google Scholar]
  10. Choma MA, Sarunic MV, Yang CH, Izatt JA, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express (2003) 11, 2183–2189. https://doi.org/10.1364/OE.11.002183 [NASA ADS] [CrossRef] [Google Scholar]
  11. Yun SH, Tearney GJ, de Boer JF, Bouma BE, Pulsed-source and swept-source spectral domain optical coherence tomography with reduced motion artifacts. Opt. Express (2004) 12, 5614–5624. https://doi.org/10.1364/OPEX.12.005614 [NASA ADS] [CrossRef] [Google Scholar]
  12. Cense B, Nassif NA, Chen TC, Pierce MC, Yun S-H, Park BH, Bouma BE, Tearney GJ, de Boer JF, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express (2004) 12, 2435–2447. https://doi.org/10.1364/OPEX.12.002435 [NASA ADS] [CrossRef] [Google Scholar]
  13. Ai J, Wang LV, Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch. Appl. Phys. Lett. (2006) 88, 111115. https://doi.org/10.1063/1.2186520 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.