Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15054
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2015.15054
Published online 26 November 2015
  1. C. Brosseau, Fundamentals of polarized light: a statistical optics approach (Wiley, New York, 1998). [Google Scholar]
  2. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003). [CrossRef] [Google Scholar]
  3. P. Réfrégier, and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051–6060 (2005). [CrossRef] [Google Scholar]
  4. M. R. Dennis, “Geometric interpretation of the three-dimensional coherence matrix for nonparaxial polarization,” J. Opt. A: Pure Appl. Opt. 6, S26–S31 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  5. S. Banerjee, and A. Roy, Linear algebra and matrix analysis for statistics (CRC Press, Boca Raton, 2014). [CrossRef] [Google Scholar]
  6. J. J. Gil, “Interpretation of the coherency matrix for threedimensional polarization states,” Phys. Rev. A 90, 043858 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  7. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. I. San José, and J. J. Gil, “Invariant indices of polarimetric purity. Generalized indices of purity for n × n covariance matrices,” Opt. Commun. 284, 38–47 (2011). [CrossRef] [Google Scholar]
  9. R. Barakat, “Degree of polarization and the principal idempotents of the coherency matrix,” Opt. Commun. 23, 147–150 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  10. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef] [Google Scholar]
  11. J. J. Gil, J. M. Correas, P. A. Melero, and C. Ferreira, “Generalized polarization algebra,” Monog. Sem. Mat. G. Galdeano 31, 161–167 (2004). [Google Scholar]
  12. A. Luis, “Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  13. A. Luis, “Polarization distribution and degree of polarization for three-dimensional quantum light fields,” Phys. Rev. A 71, 063815 (2005). [CrossRef] [Google Scholar]
  14. T. Setälä, K. Lindfors, and A. T. Friberg, “Degree of polarization in 3D optical fields generated from a partially polarized plane wave,” Opt. Lett. 34, 3394–3396 (2009). [CrossRef] [Google Scholar]
  15. J. M. Auñón, and M. Nieto-Vesperinas, “On two definitions of the three-dimensional degree of polarization in the near field of statistically homogeneous partially coherent sources,” Opt. Lett. 38, 58–60 (2013). [CrossRef] [Google Scholar]
  16. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  17. J. Ellis, and A. Dogariu, “On the degree of polarization of random electromagnetic fields,” Opt. Commun. 253, 257–265 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  18. J. J. Gil, and I. San José, “3D polarimetric purity,” Opt. Commun. 283, 4430–4434 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  19. C. J. R. Sheppard, “Jones and Stokes parameters for polarization in three dimensions,” Phys. Rev. A 90, 023809 (2014). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.