Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15020
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2015.15020
Published online 09 April 2015
  1. C. Wagner, J. Frankenberger, and P. P. Deimel, “Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si:H p-i-n photodiode,” IEEE Photonic. Tech. L. 5 1257–1259 (1993). [Google Scholar]
  2. N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sensor. Actuat. B-Chem. 7 672–676 (1992). [CrossRef] [Google Scholar]
  3. A. L. Siarkowski, L. F. Hernandez, B.-H. V. Borges, and N. I. Morimoto, “Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection,” Opt. Eng. 51, 054401 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  4. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, et al., “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008). [CrossRef] [Google Scholar]
  5. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58 287–307 (2014). [CrossRef] [Google Scholar]
  6. R. Heideman, and P. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sensor. Actuat. B-Chem. 61 100–127 (1999). [CrossRef] [Google Scholar]
  7. S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrerox, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20 7195–7205 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  8. C. Boulart, M. C. Mowlem, D. P. Connelly, J.-P. Dutasta, and C. R. German, “A novel, low-cost, high performance dissolved methane sensor for aqueous environments,” Opt. Express 16 12607–12617 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  9. C. Boulart, R. Prien, V. Chavagnac, and J.-P. Dutasta, “Sensing dissolved methane in aquatic environments: an experiment in the central Baltic Sea using surface plasmon resonance,” Environ. Sci. Technol. 47 8582–8590 (2013). [NASA ADS] [Google Scholar]
  10. C. Delezoide, I. Ledoux-Rak, and C. T. Nguyen, “General approach for the sensitivity analysis and optimization of integrated optical evanescent-wave sensors,” J. Opt. Soc. Am. B 31 851–859 (2014). [CrossRef] [Google Scholar]
  11. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, et al., “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mat. Sci. Semicon. Proc. 7 453–458 (2004). [CrossRef] [Google Scholar]
  12. S. M. Lindecrantz, and O. G. Hellesø, “Estimation of propagation losses for narrow strip and rib waveguides,” IEEE Photon. Technol. L. 26 1836–1839 (2014). [CrossRef] [Google Scholar]
  13. X. Xu, S. Chen, J. Yu, and X. Tu, “An investigation of the mode characteristics of SOI submicron rib waveguides using the film mode matching method,” J. Opt. A-Pure Appl. Op. 11, 015508 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  14. F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Singlemode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7 1–11 (2015). [NASA ADS] [CrossRef] [Google Scholar]
  15. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14 907–912 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  16. K. Tiefenthaler, and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6 209–220 (1989). [CrossRef] [Google Scholar]
  17. F. Prieto, A. Llobera, D. Jiménez, C. Doménguez, A. Calle, and L. M. Lechuga, “Design and analysis of silicon antiresonant reflecting optical waveguides for evanscent field sensor,” J. Lightwave Technol. 18 966–972 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  18. G. L. Klunder, and R. E. Russo, “Core-based intrinsic fiber-optic absorption sensor for the detection of volatile organic compounds,” Appl. Spectrosc. 49 379–385 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  19. K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.