Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15019
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2015.15019
Published online 09 April 2015
  1. C. Elosua, I. Matias, C. Bariain, and F. Arregui, “Volatile organic compound optical fiber sensors: A review,” Sensors 6 1440–1465 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  2. http://fscimage.fishersci.com/msds/89308.htm. [Google Scholar]
  3. Y. Weng, J. Rick, and T. Chou, “A sputtered thin film of nanostructured Ni/Pt/Ti on Al2O3 substrate for ethanol sensing,” Biosens. Bioelectron. 20 41–51 (2004). [CrossRef] [Google Scholar]
  4. B. Tao, J. Zhang, S. Hui, and L. Wan, “An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode,” Sensor Actuat. BChem. 142, 298–303, (2009). [CrossRef] [Google Scholar]
  5. S. Khan, M. Rahman, and K. Akhtar, “Novel and sensitive ethanol chemi-sensor based on nanohybrid materials,” Int J Electrochem. Sc. 7 4030–4038 (2012). [CrossRef] [Google Scholar]
  6. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9 57–79 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  7. M. Yasin, S. W. Harun, and H. Arof, Fiber optics sensors (Croatia: InTech, Rijeka, 2012). [CrossRef] [Google Scholar]
  8. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance.,” Opt. Express 20 21693–701 (2012). [CrossRef] [Google Scholar]
  9. S. Guo and S. Albin, “Transmission property and evanescent wave absorption of cladded multimode fiber tapers,” Opt. Express 11 215–223 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  10. J. Villatoro, D. Monzón-Hernández, and D. Luna-Moreno, “Inline optical fiber sensors based on cladded multimode tapered fibers.,” Appl. Opt. 43 5933–5938 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  11. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16 331–342 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  12. J. Z. Ou, M. H. Yaacob, J. L. Campbell, M. Breedon, K. Kalantarzadeh, and W. Wlodarski, “H sensing performance of optical fiber coated with nano-platelet WO3 film,” Sensors Actuat. B-Chem. 166–167, 1–6 (2012). [Google Scholar]
  13. B. Renganathan, D. Sastikumar, G. Gobi, N. Rajeswari Yogamalar, and A. Chandra Bose, “Nanocrystalline ZnO coated fib4er optic sensor for ammonia gas detection,” Opt. Laser Technol. 43 1398–1404 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  14. S. Manivannan, A. M. Saranya, B. Renganathan, D. Sastikumar, G. Gobi, and K. C. Park, “Single-walled carbon nanotubes wrapped poly-methyl methacrylate fiber optic sensor for ammonia, ethanol and methanol vapors at room temperature,” Sensors Actuat. BChem. 171–172, 634–638 (2012). [CrossRef] [Google Scholar]
  15. J. Yuan and M. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3 5–12 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. Consales, A. Crescitelli, M. Penza, P. Aversa, P. D. Veneri, M. Giordano, and A. Cusano, “SWCNT nano-composite optical sensors for VOC and gas trace detection,” Sensors Actuat. B-Chem. 138, 351–361, (2009). [CrossRef] [Google Scholar]
  17. Z. Zhang, R. Lockwood, J. G. Veinot, and A. Meldrum, “Detection of ethanol and water vapor with silicon quantum dots coupled to an optical fiber,” Sensors Actuat. B-Chem. 181 523–528 (2013). [CrossRef] [Google Scholar]
  18. S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sensors Actuat. B-Chem. 153 194–198 (2011). [CrossRef] [Google Scholar]
  19. F. B. Xiong and D. Sisler, “Determination of low-level water content in ethanol by fiber-optic evanescent absorption sensor,” Opt. Commun. 283 1326–1330 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  20. S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, et al., “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117 10683–10690 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  21. V. Singh, D. Joung, L. Zhai, and S. Das, “Graphene based materials: past, present and future,” Prog. Mater. Sci. 56 1178–1271 (2011). [CrossRef] [Google Scholar]
  22. F. A. Chowdhury, T. Morisaki, J. Otsuki, and M. Sahabul Alam, “Annealing effect on the optoelectronic properties of graphene oxide thin films,” Appl. Nanosci. 3 477–483 (2012). [Google Scholar]
  23. A. Aziz, H. N. Lim, S. H. Girei, M. H. Yaacob, M. A. Mahdi, N. M. Huang, and A. Pandikumar, “Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium,” Sensors Actuat. B-Chem. 206 119–125 (2015). [CrossRef] [Google Scholar]
  24. W. H. Jr and R. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. 208, 1339 (1958). [Google Scholar]
  25. H. N. Lim, N. M. Huang, S. S. Lim, I. Harrison, and C. H. Chia, “Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth.,” Int. J. Nanomed. 6, 1817–23, (2011). [CrossRef] [Google Scholar]
  26. S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Opt. Int. J. Light Electron Opt. 124 538–543 (2013). [CrossRef] [Google Scholar]
  27. T. Birks and Y. Li, “The shape of fiber tapers,” Light. Technol. J. 10 432–438 (1992). [CrossRef] [Google Scholar]
  28. N. F. Lokman, A. A. A. Bakar, F. Suja, H. Abdullah, W. B. W. A. Rahman, N.-M. Huang, and M. H. Yaacob, “Highly sensitive SPR response of Au/chitosan/graphene oxide nanostructured thin films toward Pb (II) ions,” Sensors Actuat. B-Chem. 195 459–466 (2014). [CrossRef] [Google Scholar]
  29. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, et al., “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy,” Carbon N. Y. 47 145–152 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  30. L. Nikiel and P. W. Jagodzinski, “Raman spectroscopic characterization of graphites: A re-evaluation of spectra/ structure correlation,” Carbon N. Y. 31 1313–1317 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  31. S. Gurunathan, J. W. Han, V. Eppakayala, and J.-H. Kim, “Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.,” Colloids Surf. B. Biointerfaces 105, 58–66 (2013). [CrossRef] [Google Scholar]
  32. Y. Chang, Y. Yao, B. Wang, H. Luo, T. Li, and L. Zhi, “Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gassensing properties,” J. Mater. Sci. Technol. 29 157–160 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  33. V. S. Langford, A. J. Mckinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105 8916–8921 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  34. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents.,” Langmuir 24 10560–4 (2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.