Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15005
Number of page(s) 9
DOI https://doi.org/10.2971/jeos.2015.15005
Published online 29 January 2015
  1. S. Kasap, and P. Capper Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2006). [Google Scholar]
  2. M. Demirta¸s, A. Özden, and F. Ay, “Optimization ALD of grown Al2O3 host material for use in integrated optical circuits,” in proceedings to the 10th Nano science and Nanotechnology Conference 138 (Yeditepe University, Istanbul, 2014). [Google Scholar]
  3. G. Este, and W. D. Westwood, “Reactive deposition of low loss Al2O3 optical waveguides by modified dc planar magnetron sputtering,” J. Vac. Sci. Technol. A 2, 1238 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  4. M. K. Smit, and G. A. Acket, “Al2O3 films for integrated optics,” Thin Solid Films 138, 171–181, (1986). [NASA ADS] [CrossRef] [Google Scholar]
  5. M. Mahnke, S. Wiechmann, H. J. Heider, O. Blume, and J. Müller, “Aluminum Oxide Doped with Erbium, Titanium and Chromium for Active Integrated Optical Applications,” Int. J. Electron. Comm. 50, 342–348 (2001). [CrossRef] [Google Scholar]
  6. A. Suarez-Garcia, J. Gonzalo, and C. N. Afonso, “Low-loss Al2O3 wave guides produced by pulsed laser deposition at room temperature,” Appl. Phys. A-Matter 77, 779–783 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  7. M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, “Low-Loss Optical Waveguides for the Near Ultra-Violet and Visible Spectral Regions with Al2O3 Thin Films from Atomic Layer Deposition,” Thin Solid Films 518, 4935–4940 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  8. H. Moshe, and Y. Mastai, “Atomic Layer Deposition on Self-Assembled-Mono layers,” in Materials Science Advanced Topics, Prof. Yitzhak Mastai (ed.) (InTech, Rijeka, 2013). [Google Scholar]
  9. K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium-Doped Waveguides Fabricated With Atomic Layer Deposition Method,” IEEE Photonic Tech. L. 16, 194–196 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  10. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Elect. 27, 1971–1974 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  11. N. M. Kassim, A. B. Mohammad, A. S. M. Supa’at, M. H. Ibrahim, and S. Y. Gang, “Single Mode Rib Optical Waveguide Modeling Techniques,” in proceedings RF of and Microwave Conference Malaysia, 272–276 (IEEE, Subang, Selangor, 2004). [Google Scholar]
  12. M. Laurentis, A. Irace, and G. Breglio, “Determination of single mode condition in dielectric rib waveguide with large cross section by finite element analysis,” J. Comput. Electron. 6, 285–287 (2007). [CrossRef] [Google Scholar]
  13. J. Duan, J. Wang, B. Zhang, and Y. Ren, “Optimizing Design of a Single-Mode Optical Rib Waveguide,” Adv. Mat. Res. 710, 464–468 (2013). [Google Scholar]
  14. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  15. C. Ciminelli, P. Frascella, and M. N. Armenise, “Optical modelling of a Si-based DBR laser source using a nanocrystal Si-sensitized Er-doped silica rib waveguide in the C-band,” J. Eur. Opt. Soc.-Rapid 3, 08017 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, and V. Mahajan et al., Handbook of optics (3rd edition, McGraw Hill Professional, London, 2009). [Google Scholar]
  17. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J.Sel. Top. Quant. 6, 150–162 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  18. D. A. Yevick, “guide to electric-field propagation techniques for guided-wave optics,” Opt. Quant. Electron. 26, S185–S197 (1994). [CrossRef] [Google Scholar]
  19. K. S. Chiang, “Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides,” Opt. Quant. Electron. 26, S113–S134 (1994). [CrossRef] [Google Scholar]
  20. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  21. C. R. Pollock, Fundamentals of Optoelectronics (Richard D Irwin Inc, Chicago, 1994). [Google Scholar]
  22. O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photo induced change in birefringence,” Appl. Phys. Lett. 70, 750–752 (1997). [CrossRef] [Google Scholar]
  23. S. Ohke, T. Umeda, and Y. Cho, “TM-mode selective filter using leaky waveguide structure,” Electron. Commun.JPN. 85, 1241–1246 (2002). [Google Scholar]
  24. Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TEo) mode selection for thinfilm asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972). [NASA ADS] [CrossRef] [Google Scholar]
  25. Y. Okamura, S. Yamamoto, and T. Makimoto, “Wave propagation in semileaky-type anisotropic thin-film optical waveguides,” J. Opt. Soc. Am. 67, 539–545 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  26. A. Y. Agapov, A. P. Gorobetz, V. M. Shevtsov, and P. M. Zhitkov, “Efficient TM-pass multilayer planar optical waveguide polarizer,” Electron.Lett. 27, 1804–1805 (2012). [Google Scholar]
  27. G. N. V. D. Hoven, R. J. I. M. Koper, and A. Polman, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett., 64: 1886-1888, (1996). [NASA ADS] [CrossRef] [Google Scholar]
  28. L. Agazzi, J. D. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, et al., “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18, 27703–27711 (2010). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.