Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15004
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2015.15004
Published online 29 January 2015
  1. P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, and M. Matsumoto, “A universal platform for ubiquitous wireless communications using Radio over FSO system,” J. Lightwave Technol. 28, 2258–2267 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  2. M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and C. Gee-Kung, “Radio-Over-Fiber access architecture for integrated broadband wireless services,” J. Lightwave Technol. 31, 3614–3620 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  3. C. Chen, C. Zhang, W. Zhang, W. Jin, and K. Qiu, “Scalable and reconfigurable generation of flat optical comb for WDM-based nextgeneration broadband optical access networks,” Opt. Commun. 321, 16–22 (2014). [CrossRef] [Google Scholar]
  4. T. Kanesan, W. Pang Ng, Z. Ghassemlooy, and C. Lu, “Investigation of optical modulators in optimized nonlinear compensated LTE RoF system,” J. Lightwave Technol. 32, 1944–1950 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  5. Y. Hsueh, Z. Jia, H. Chien, A. Chowdhury, J. Yu, and G. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol. 29, 1105–1111 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  6. C. J. Hansen, “WiGiG: Multi-gigabit wireless communications in the 60 GHz band,” IEEE Wirel. Commun. 18, 6–7 (2011). [CrossRef] [Google Scholar]
  7. G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, “High-Order distortion in directly modulated semiconductor lasers in high-loss analog optical links with large RF dynamic range,” J. Lightwave Technol. 29, 3577–3586 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  8. L. M. Johnson, and H. V. Roussell, “Reduction of intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13, 928–930 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  9. W. B. Bridges, and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–2197, (1995). [CrossRef] [Google Scholar]
  10. A. Prescod, B. B. Dingel, N. Madamopoulos, and R. Madabhushi, “Effect of ring resonator waveguide loss on SFDR performance of highly linear optical modulators under suboctave operation,” IEEE Photon.Tech. L. 22, 1297–1299 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  11. E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol. 30, 3672–3678 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  12. J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, C. Zhang, C. Li, “Optical single sideband modulation with continouslytunable optical carrier-to-sideband ratio by employing a dual-parallel Mach-Zehnder modulator,” Acta Phys. Sin. 62 (2013). [Google Scholar]
  13. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear Radioover-Fiber system incorporating a single-drive Dual-Parallel Mach-Zehnder modulator,” IEEE Photon.Tech. L. 22, 1775–1777 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  14. Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, L. Shang, “Microwave Generation With Photonic Frequency Sextupling Based on Cascaded Modulators,” IEEE Photon.Tech. L. 26, 1199–1202 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  15. D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photon. Tech. L. 22, 1485–1487, (2010). [Google Scholar]
  16. S. Musa, N. S. Lagali, G. Sengo, G. J. M. Krijnen, and A. Driessen, “Design and fabrication of 1xN and NxN planar waveguide couplers for multimode fiber-based local area networks,” in Proceedings of IEEE/LEOS Benelux Chapter 2001 Annual Symposium (IEEE, Twente, 2001). [Google Scholar]
  17. A. Hosseini, H. Subbaraman, D. Kwong, Y. Zhang, and R. T. Chen, “Optimum access waveguide width for 1xN multimode interference couplers on silicon nanomembrande,” Opt. Lett. 35, 2864–2865 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  18. R. Thapliya, T. Kikuchi, and S. Nakamura, “Tunable power splitter based on an electro-optic multimode interference device,” Appl. Optics 46, 4155–4161 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  19. D. A. May-Arrioja, P. LikamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Measurement Science and Technol. 18, 3241–3246 (2007). [CrossRef] [Google Scholar]
  20. M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of selfimages for uniform and nonuniform power splitting,” Appl. Optics 34, 6898–6910 (1995). [CrossRef] [Google Scholar]
  21. E. I. Ackerman, “Broad-band Linearization of a Mach-Zehnder Electrooptic Modulator,” IEEE Trans. Microw. Theory Techniques, 47, 2271–2279 (1999). [CrossRef] [Google Scholar]
  22. Y. Zhang, S. Y. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. B. Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  23. A. Rajandekar, and R. Singhal, “Voltage-controlled all-polymer reconfigurable optical power splitter,” in Proceedings of IEEE 4th International Conference on Photonics 244–246 (IEEE, Melaka, 2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.