Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14060
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2014.14060
Published online 26 December 2014
  1. S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999). [CrossRef] [Google Scholar]
  2. M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg 30, 2336–2343 (2004). [CrossRef] [Google Scholar]
  3. K. Zhao, Y. Wang, T. Zuo, and H. Wang, “Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg. 14, S222–225 (1998). [CrossRef] [Google Scholar]
  4. T. Gamaly, “LASIK with the optimized aspheric transition zone and cross-cylinder technique for the treatment of astigmatism from 1.00 to 4.25 diopters,” J. Refract. Surg. 25, S927–930 (2009). [CrossRef] [Google Scholar]
  5. R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg. 25, 331–338 (2009). [CrossRef] [Google Scholar]
  6. M. C. Arbelaez , C. Vidal, B. A. Jabri, and S. Arba Mosquera, “LASIK for myopia with Aspheric ‘aberration neutral’ ablations using the ESIRIS laser system,” J. Refract. Surg. 25, 991–999 (2009). [CrossRef] [Google Scholar]
  7. L. Fang, Y. Wang, and X. He, “Effect of pupil size on residual wavefront aberration with transition zone after customized laser refractive surgery,” Opt. Express 21, 1404–1416 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  8. P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg. 35, 695–702 (2009). [CrossRef] [Google Scholar]
  9. N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, “Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007). [CrossRef] [Google Scholar]
  10. N. Yamane, K. Miyata T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, et al., “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” J. Invest. Ophthalmol. Vis. Sci. 45 3986–3990 (2004). [CrossRef] [Google Scholar]
  11. L. Wang, and D. D. Koch, “Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation,” J. Cataract. Refract. Surg. 34, 2057–2062 (2008). [CrossRef] [Google Scholar]
  12. L. Fang, X. He, and F. Chen, “Theoretical analysis of wavefront aberration from treatment decentration with oblique incidence after conventional laser refractive surgery,” Opt. Express 18, 22418–22431 (2010). [CrossRef] [Google Scholar]
  13. L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol. 19, 923–929 (2009). [CrossRef] [Google Scholar]
  14. S. B. Lee, B. S. Hwang, and J. Lee, “Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg. 26, 731–743 (2010). [CrossRef] [Google Scholar]
  15. J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract. Refract. Surg. 36, 1718–1723 (2010). [CrossRef] [Google Scholar]
  16. M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol 119, 1159–1164 (2001). [CrossRef] [Google Scholar]
  17. L. Fang, Y. Wang, and X. He, “Theoretical analysis of wavefront aberration caused by treatment decentration and transition zone after custom myopic laser refractive surgery,” J. Cataract Refract. Surg. (2013) article in press. [Google Scholar]
  18. Y. Hori-Komai, I. Toda, N. Asano-Kato, M. Ito, T. Yamamoto, and K. Tsubota, “Comparison of LASIK using the NIDEK EC-5000 optimized aspheric transition zone (OATz) and conventional ablation profile,” J. Refract. Surg. 22, 546–555 (2006). [CrossRef] [Google Scholar]
  19. O. Kermani, K. Schmiedt, U. Oberheide, and G. Gerten, “Early results of nidek customized aspheric transition zones (CATz) in laser in situ keratomileusis,” J. Refract. Surg. 19, S190–194 (2003). [CrossRef] [Google Scholar]
  20. K. Y. Seo, J. B. Lee, J. J. Kang, E. S. Lee, and E. K. Kim, “Comparison of higher-order aberrations after LASEK with a 6.0 mm ablation zone and a 6.5 mm ablation zone with blend zone,” J. Cataract. Refract. Surg. 30, 653–657 (2004). [CrossRef] [Google Scholar]
  21. J. Bühren, C. Kühne, and T. Kohnen, “Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract. Refract. Surg. 31, 2272–2280 (2005). [CrossRef] [Google Scholar]
  22. M. Camellin, and S. Arba Mosquera, “Aspheric optical zones: the effective optical zone with the SCHWIND AMARIS,” J. Refract. Surg. 27, 135–146 (2011). [CrossRef] [Google Scholar]
  23. M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol. 80, 224–234 (1996). [CrossRef] [Google Scholar]
  24. J. R. Jiménez, F. Rodríguez-Marín, R. G. Anera, and L. Jiménez Del Barco, “Deviations of Lambert-Beer’s law affect corneal refractive parameters after refractive surgery,” Opt. Express 14, 5411–5417 (2006). [CrossRef] [Google Scholar]
  25. Y. Kwon, and S. Bott, “Postsurgery corneal asphericity and spherical aberration due to ablation efficiency reduction and corneal remodelling in refractive surgeries,” Eye 23, 1845–1850 (2009). [CrossRef] [Google Scholar]
  26. Y. Kwon, M. Choi, and S. Bott, “Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam,” Opt. Express 16, 11808–11821 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  27. S. Arba-Mosquera, and D. de Ortueta, “Geometrical analysis of the loss of ablation efficiency at non-normal incidence,” Opt. Express 16, 3877–3895 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  28. C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17, 15292–15307 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  29. P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg. 14, S199–203 (1998). [Google Scholar]
  30. P. Vinciguerra, F. I. Camesasca, and I. M. Torres, “Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract. Refract. Surg. 31, 39–47 (2005). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.