Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14057 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2014.14057 | |
Published online | 22 December 2014 |
- W. K. Wooters, and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef] [Google Scholar]
- V. Bužek, and M. Hillery, “Quantum copying: beyond the nocloning theorem,” Phys. Rev. A 54, 1844–1852 (1996). [CrossRef] [Google Scholar]
- V. Bužek, and M. Hillery, “Universal optimal cloning of arbitrary quantum states: from qubits to quantum registers,” Phys. Rev. Lett. 81, 5003–5006 (1998). [CrossRef] [Google Scholar]
- N. J. Cerf, A. Ipe, and X. Rottenberg, “Cloning of continuous quantum variables,” Phys. Rev. Lett. 85, 1754–1757 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Zhai, J. Guo, and J. R. Gao, “Generalization of continuousvariable quantum cloning with linear optics,” Phys. Rev. A 73, 052302 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Fiurásek, “Optical implementation of continuous-variable quantum cloning machines,” Phys. Rev. Lett. 86, 4942–4945 (2001). [CrossRef] [Google Scholar]
- S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- N. J. Cerf, O. Krüger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- S. Olivares, M. G. A. Paris, and U. L. Andersen, “Cloning of Gaussian states by linear optics,” Phys. Rev. A 73, 062330 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- U. L. Andersen, V. Josse, and G. Leuchs, “Unconditional quantum cloning of coherent states with linear optics,” Phys. Rev. Lett. 94, 240503 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- M. Sabuncu, U. L. Andersen, and G. Leuchs, “Experimental demonstration of continuous variable cloning with phase-conjugate inputs,” Phys. Rev. Lett. 98, 170503 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935). [CrossRef] [Google Scholar]
- Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- M. D. Reid, and P. D. Drummond, “Quantum correlations of phase in nondegenerate parametric oscillation,” Phys. Rev. Lett. 60, 2731–2733 (1988). [CrossRef] [Google Scholar]
- A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- J. Jing, J. Zhang, Y. Yan, F. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- C. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97, 110501 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, “Coherent-state quantum key distribution without random basis switching,” Phys. Rev. A 73, 022316 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- C. Weedbrook, N. B. Grosse, T. Symul, P. K. Lam, and T. C. Ralph, “Quantum cloning of continuous-variable entangled states,” Phys. Rev. A 77, 052313 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- J. Laurat, T. Coudreau, N. Treps, A. Maître, and C. Fabre, “Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams,” Phys. Rev. Lett. 91, 213601 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- J. Laurat, T. Coudreau, N. Treps, A. Maître and C. Fabre, “Conditional preparation of a nonclassical state in the continuousvariable regime: theoretical study,” Phys. Rev. A 69, 033808 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- A. Franzen, B. Hage, J. DiGuglielmo, J. Fiuráˇsek, and R. Schnabel, “Experimental demonstration of continuous variable purification of squeezed states,” Phys. Rev. Lett. 97, 150505 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- B. Hage, A. Samblowski, J. DiGuglielmo, A. Franzen, J. Fiuráˇsek, and R. Schnabel, “Preparation of distilled and purified continuousvariable entangled states,” Nat. Phys. 4, 915–918 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- R. Dong, M. Lassen, J. Heersink, C. Marquardt, R. Filip, G. Leuchs, and U. L. Andersen, “Experimentally entanglement distillation of mesoscopic quantum states,” Nat. Phys. 4, 919–923 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Entanglement distillation from Gaussian input states,” Nat. Photonics 4, 178–181 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Optic. 41, 2315–2323 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- H. Zhang, W. Liang, K. Liu, J. X. Zhang, and J. R. Gao, “Fidelity with quadrature component variances for continuous variable quantum teleportation,” J. Phys. B 45, 115501 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- S. L. Braunstein, and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- J. Fiuráˇsek, P. Marek, R. Filip, and R. Schnabel, “Experimentally feasible purification of continuous-variable entanglement,” Phys. Rev. A 75, 050302 (2007). [CrossRef] [Google Scholar]
- M. Lassen, L. S. Madsen, M. Sabuncu, R. Filip, and U. L. Andersen, “Experimental demonstration of squeezed-state quantum averaging,” Phys. Rev. A 82, 021801(R) (2010). [NASA ADS] [CrossRef] [Google Scholar]
- L. M. Duan, and G. C. Guo, “Probabilistic cloning and identification of linearly independent quantum states,” Phys. Rev. Lett. 80, 4999–5002 (1998). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.