Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14056 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2971/jeos.2014.14056 | |
Published online | 20 December 2014 |
- W. Lauterborn, and W. Hentschel, “Cavitation bubble dynamics studied by high-speed photography and holography,” Ultrasonics 23, 260–268 (1985). [CrossRef] [Google Scholar]
- D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- L. Méès, N. Grosjean, D. Chareyron, J. L. Marié, M. Seifi, and C. Fournier, “Evaporating droplet hologram simulation for digital in-line holography set-up with divergent beam,” J. Opt. Soc. Am. A 30, 2021–2028 (2013). [CrossRef] [Google Scholar]
- G. Gréhan, F. Onofri, T. Girasole, G. Gouesbet, F. Durst, and C. Tropea, “Measurement of bubbles by Phase Doppler technique and trajectory ambiguity,” in Developments in laser techniques and applications to fluid mechanics, R. J. Adrian, D. F. G. Du˜rao, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds., 290–302 (Springer-Verlag, Berlin, 1996). [CrossRef] [Google Scholar]
- H. Shen, S. Saengkaew, G. Gréhan, S. Coëtmellec, and M. Brunel, “Interferometric out-of-focus imaging for the 3D tracking of spherical bubbles in a cylindrical channel,” Opt. Commun. 320, 156–161 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A. J. E. M. Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Europ. Opt. Soc. Rap. Public. 9, 14021 (2014). [CrossRef] [Google Scholar]
- S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [NASA ADS] [CrossRef] [Google Scholar]
- T. Alieva, and M. J. Bastiaans, “Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007). [CrossRef] [Google Scholar]
- R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966). [Google Scholar]
- M. J. Bastiaans, and T. Alieva, “Signal representation on the angular Poincaré sphere, based on second-order moments,” J. Opt. Soc. Am. A 27, 918–927 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The fractional Fourier transform: with applications in optics and signal processing (Wiley, Chichester, 2001). [Google Scholar]
- Y. Cai, and Q. Lin, “Propagation of elliptical Gaussian beam through misaligned optical systems in spatial domain and spatialfrequency domain,” Opt. Laser Technol. 34, 415–421 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, “Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction,” J. Opt. Soc. Am. A 25, 1459–1466 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. Born, and E. Wolf, Principles of optics (Cambridge University Press, Cambridge, 1999). [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, and P. Dirksen, “Concise formula for the Zernike coefficients of scaled pupils,” J. Microlith. Microfab. 5, 030501 (2006). [Google Scholar]
- A. J. E. M. Janssen, “New analytic results for the Zernike circle polynomials from a basic result in the Nijboer–Zernike diffraction theory,” J. Europ. Opt. Soc. Rap. Public. 6, 11028 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. E. M. Janssen, “Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” J. Opt. Soc. Am. A 22, 2569–2577 (2005). [CrossRef] [Google Scholar]
- S. van Haver, and A. J. E. M. Janssen, “Advanced analytic treatment and efficient computation of the diffraction integrals in the extended Nijboer–Zernike theory,” J. Eur. Opt. Soc. Rap. Public. 8, 13044 (2013). [CrossRef] [Google Scholar]
- X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, et al., “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- R. M. Aarts, and A. J. E. M. Janssen, “On-axis and far-field sound radiation from resilient flat and dome-shaped radiators,” J. Acoust. Soc. Am. 125, 1444–1455 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- S. Coëtmellec, D. Lebrun, and C. Özkul, “Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier transform,” Appl. Opt. 41, 312–319 (2002). [CrossRef] [Google Scholar]
- V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” IMA J. Appl. Math. 25, 241–265 (1980). [NASA ADS] [CrossRef] [Google Scholar]
- L. Bernardo, and O. Soares, “Optical fractional Fourier transforms with complex orders,” Appl. Opt. 35, 3163–3166 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- P. Pellat-Finet, and E. Fogret, “Complex order fractional Fourier transforms and their use in diffraction theory. Application to optical resonators,” Opt. Commun. 258, 103–113 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, “Computation of Hopkins’ 3-circle integrals using Zernike expansions,” J. Europ. Opt. Soc. Rap. Public. 6, 11059 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- M. Abramowitz, and I. Stegun, Handbook of mathematical functions (Dover Publications, New York, 1970). [Google Scholar]
- W. J. Tango, “The circle polynomials of Zernike and their application in optics,” Appl. Phys. 13, 327–332 (1977). [CrossRef] [Google Scholar]
- F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. E. M. Janssen, “Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” J. Opt. Soc. Am. A 22, 2569–2577 (2005). [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.