Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14054
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2014.14054
Published online 16 December 2014
  1. C. C. Austin, B. Roberge, and N. Goyer, “Cross-sensitivities of electrochemical detectors used to monitor worker exposures to airborne contaminants: false positive responses in the absence of target analytes”, J. Environ. Monitor. 8(1), 161–166 (2006). [CrossRef] [Google Scholar]
  2. H. Meixner, and U. Lampe, “Metal oxide sensors”, Sensor. Actuat. B-Chem. 331, 198–202 (1996). [CrossRef] [Google Scholar]
  3. S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, and D. S. Presicce, “Solid state gas sensors: State of the art and future activities”, J. Optoelecton. Adv. M. 5(5), 1335–1348 (2003). [Google Scholar]
  4. A. Honne, H. Odegard, H. Schumann-Olsen, H. Mosebach, D. Kampf, T. Stuffler, and G. Tan, “ANITA–Preparing for Automatic Air Analyses on the ISS”, in Proceedings of International Conference On Environmental Systems (SAE - Society of Automotive Engineers, Rome, 2005). [Google Scholar]
  5. “OptoSense”, http://www.optosense.com/. [Google Scholar]
  6. “GasSecure”, http://www.gassecure.com/. [Google Scholar]
  7. D. A. Long, The Raman effect: a unified treatment of the theory of Raman scattering by molecules (John Wiley & Sons Ltd, West Sussex, 2002). [Google Scholar]
  8. S. Biedrzycki, Advanced techniques for gas-phase raman spectroscopy (Master thesis, University of Pittsburgh, 2011). [Google Scholar]
  9. J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scatteringbased sensor system for temporally resolved gas analysis and its application in a gas turbine power plant”, Meas. Sci. Technol. 19(8), 085408 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  10. J. B. Slater, J. M. Tedesco, R. C. Fairchild, and I. R. Lewis, “Raman spectrometry and its adaption to the industial environment”, in Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line I. R. Lewis, and H. G. M. Edwards, eds. (Marcel Dekker Inc., New York City, 2001). [Google Scholar]
  11. M. E. Andersen, and R. Z. Muggli, “Microscopical techniques in the use of the molecular optics laser examiner Raman microprobe”, Anal. Chem. 53(12), 1772–1777 (1981). [CrossRef] [Google Scholar]
  12. “ThermoScientific - TruScan”, http://www.ahurascientific.com/ material-verification/products/truscan/. [Google Scholar]
  13. “OceanOptics - IDRaman mini”, http://oceanoptics.com/product/ idraman-mini/. [Google Scholar]
  14. “SciAps - Inspector500”, http://sciaps.com/portable-raman-spectrometers/inspector-500/. [Google Scholar]
  15. M. A. Young, D. A. Stuart, O. Lyandres, M. R. Glucksberg, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy with a laser pointer light source and miniature spectrometer”, Can. J. Chem. 82(10), 1435–1441 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  16. Y. Oki, J. Takafuji, and M. Maeda, “Nonlinear Raman spectroscopies with Raman shifter for sensitive gas detection”, IEEE LEOS Ann. Mtg. 99, 191–193 (1999). [Google Scholar]
  17. R. A. Hill and D. L. Hartley, “Focused, multiple-pass cell for Raman scattering.”, Appl. Optics 13(1), 186–92 (1974). [NASA ADS] [CrossRef] [Google Scholar]
  18. K. C. Utsav, Development of a multiple-pass Raman spectrometer for flame diagnostics (Dissertation thesis, University of Texas, 2013). [Google Scholar]
  19. J. M. Tedesco, and J. B. Slater, “Ellipsoidal raman signal amplifier”, U. S. Patent US 2014/0036347 A1 (2014). [Google Scholar]
  20. R. A. Hill, A. J. Mulac, and C. E. Hackett, “Retroreflecting multipass cell for Raman scattering”, Appl. Optics 16(7), 2004–2006 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  21. X. Li, Y. Xia, L. Zhan, and J. Huang, “Near-confocal cavityenhanced Raman spectroscopy for multitrace-gas detection”, Opt. Lett. 33(18), 2143–2145 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  22. X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber”, Sensor. Actuat. B-Chem. 176, 64–68 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  23. W. F. Pearman, J. C. Carter, S. M. Angel, and J. W.-J. Chan, “Multipass capillary cell for enhanced Raman measurements of gases”, Appl. Spectrosc. 62(3), 285–9 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  24. S. Brunsgaard Hansen, R. W. Berg, and E. H. Stenby, “High-pressure measuring cell for Raman spectroscopic studies of natural gas”, Appl. Spectrosc. 55(1), 55–60 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  25. S. Ohara, S. Yamaguchi, M. Endo, K. Nanri, and T. Fujioka, “Performance characteristics of power build-up cavity for Raman spectroscopic measurement”, Opt. Rev. 10(5), 342–345 (2003). [CrossRef] [Google Scholar]
  26. R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy”, Analyst 137, 4669–4676 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  27. “Atmosphere Recovery Inc”, http://www.atmrcv.com/technology.html. [Google Scholar]
  28. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Ltd, New York, 1991). [CrossRef] [Google Scholar]
  29. E. Voges, and K. Petermann, Optische Kommunikationstechnik (Springer, Heidelberg, 2002). [CrossRef] [Google Scholar]
  30. J. D. Koch, and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications”, Appl. Phys. B-Lasers O. 76(3), 319–324 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  31. T. Bakke, A. Vogl, O. Żero, F. Tyholdt, I.-R. Johansen, and D. Wang, “A novel ultra-planar, long-stroke and low-voltage piezoelectric micromirror”, J. Micromech. Microeng. 20(6), 064010 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  32. T. Bakke, and I.-R. Johansen, “A robust, non-resonant piezoelectric micromirror”, in Proceedings of 16th International Conference on Optical MEMS and Nanophotonics 171–172 (IEEE, Istanbul, 2011). [Google Scholar]
  33. E. Kikkinides, R. Yang, and S. Cho, “Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption”, Ind. Eng. Chem. Res. 32, 2714–2720 (1993). [CrossRef] [Google Scholar]
  34. X. Xu, C. Song, R. Wincek, J. M. Andresen, B. G. Miller, and A. W. Scaroni, “Separation of CO2 from Power Plant Flue Gas Using a Novel CO2’ Molecular Basket ’ Adsorbent”, Fuel Chem. Div. Prepr. 48(1), 162–163 (2003). [Google Scholar]
  35. S. C. Eichmann, J. Kiefer, J. Benz, T. Kempf, A. Leipertz, and T. Seeger, “Determination of gas composition in a biogas plant using a Raman-based sensor system”, Meas. Sci. Technol. 25(7), 075503 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  36. B. Belaissaoui, G. Cabot, M.-S. Cabot, D. Willson, and E. Favre, “An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation”, Energy 38(1), 167–175 (2012). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.