Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14043
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2014.14043
Published online 01 October 2014
  1. F. Jinxiang, and Y. Yanjun, “Development in new concepts and new schemes for military infrared imaging systems”, Infrared Laser Eng. 40, 1–6 (2011). [Google Scholar]
  2. F. Jinxiang, and Y. Yanjun, “Development trends of infrared detecting technology”, Infrared Laser Eng. 41, 3145–3153 (2012). [Google Scholar]
  3. D. L. Donoho, “Compressed sensing”, IEEE T. Inform. Theory 52, 1289–1306 (2006). [Google Scholar]
  4. Y. Tsaig, and D. L. Donoho, “Extensions of compressed sensing”, Signal Process 86, 549–571 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  5. A. D. Portnoy, N. P. Pitsianis, D. J. Brady, J. Guo, M. A. Fiddy, M. R. Feldman, and R. D. Te Kolste, “Thin digital imaging systems using focal plane coding”, Proc. SPIE 6065, 60650F (2006). [CrossRef] [Google Scholar]
  6. A. D. Portnoy, N. P. Pitsianis, X. Sun, and D. J. Brady, “Multichannel sampling schemes for optical imaging systems”, Appl. Optics 47, B76–B85 (2008). [CrossRef] [Google Scholar]
  7. N. Pitsianis, D. Brady, A. Portnoy, X. Sun, T. Suleski, M. Fiddy, M. Feldman, and R. TeKolste, “Compressive imaging sensors”, Proc. SPIE 6232, 62320A (2006). [NASA ADS] [CrossRef] [Google Scholar]
  8. R. G. Baraniuk, “Single-pixel imaging via compressive sampling”, IEEE Signal Proc. Mag. 25, 83–91 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  9. N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. C. Raptis, L. Spinoulas, and A. K. Katsaggelos, “Passive millimeter-wave imaging with compressive sensing”, Opt. Eng. 51, 091614–1 (2012). [Google Scholar]
  10. L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method for high resolution infrared imaging”, Infrared Laser Eng. 40, 2065–2070 (2011). [Google Scholar]
  11. L.-L. Xiao, K. Liu, D.-P. Han, and J.-Y. Liu, “A compressed sensing approach for enhancing infrared imaging resolution”, Opt. Laser Technol. 44, 2354–2360 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  12. E. J. Candes, “The restricted isometry property and its implications for compressed sensing”, C. R. Math. 346, 589–592 (2008). [CrossRef] [Google Scholar]
  13. J. Haupt, and R. Nowak, “Signal reconstruction from noisy random projections”, IEEE T. Inform. Theory 52, 4036–4048 (2006). [Google Scholar]
  14. E. J. Candes, and T. Tao, “Decoding by linear programming”, IEEE T. Inform. Theory 51, 4203–4215 (2005). [Google Scholar]
  15. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements”, Commun Pur. Appl. Math. 59, 1207–1223 (2006). [CrossRef] [Google Scholar]
  16. G.-M. Shi, D.-H. Liu, D. Gao, Z. Liu, J. Lin, and L.-J. Wang, “Advances in theory and application of compressed sensing”, Acta Electron. 37, 1070–1081 (2009). [Google Scholar]
  17. W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-structured compressed sensing matrices”, in Proceedings of Statistical Signal Processing, 2007. SSP’07. IEEE/SP 14th Workshop on, 294–298 (IEEE, Madison, 2007). [Google Scholar]
  18. M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems”, IEEE J. Sel. Top. Signa. 1, 586–597 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  19. C. Bo-liang, “Development state of IRFPA imaging device [J]”, Infrared Laser Eng. 1, 000 (2005). [Google Scholar]
  20. X.-P. Shao, C. Zhong, J. Du, and C.-C. Rao, “Super-resolution imaging method using multi-value compressed coded aperture”, J. Optoelectronics Laser 6, 032 (2012). [Google Scholar]
  21. Y. Li, and B. He, “Quantitative evaluation of image quality of CCD subpixel imaging using MTF”, Infrared Laser Eng. 42, (2013). [Google Scholar]
  22. F. B. Xu Baoshu, and S. Zelin, “Modulation Transfer Function Measurement Method of Electro-optical Imaging System”, Acta Optica Sin. 31, 1111004 (2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.