Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14042 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.2971/jeos.2014.14042 | |
Published online | 27 September 2014 |
- S. van Haver, and A. J. E. M. Janssen, “Advanced analytic treatment and efficient computation of the diffraction integrals in the Extended Nijboer-Zernike theory”, J. Europ. Opt. Soc. Rap. Public. 8, 13044 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions”, J. Opt. Soc. Am. A19, 849–857 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions”, J. Opt. Soc. Am. A19, 858–870 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes, “Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system”, J. Opt. Soc. Am. A20, 2281–2292 (2003). [Google Scholar]
- J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, S. van Haver, and A. S. van de Nes, “Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system”, J. Opt. Soc. Am. A22, 2635–2650 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- S. van Haver, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “High-NA aberration retrieval with the Extended Nijboer-Zernike vector diffraction theory”, J. Europ. Opt. Soc. Rap. Public. 1, 06004 (2006). [CrossRef] [Google Scholar]
- S. van Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of threedimensional objects based on the extended Nijboer-Zernike theory”, J. Opt. Soc. Am. A26, 1221–1234 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and S. F. Pereira, “Image formation in a multilayer using the extended Nijboer- Zernike theory”, J. Europ. Opt. Soc. Rap. Public. 4, 09048 (2009). [CrossRef] [Google Scholar]
- S. van Haver, The Extended Nijboer-Zernike Diffraction Theory and its Applications (Ph.D. thesis, Delft University of Technology, 2010). [Google Scholar]
- J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions”, Prog. Optics 51, 349–468 (2008). [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen, “On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus”, J. Mod. Opt. 51, 687–703 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. Boersma, “On the computation of Lommel’s functions of two variables”, Math. Comput. 16, 232–238 (1962). [Google Scholar]
- S. van Haver, and A. J. E. M. Janssen, “Truncation strategy for the series expressions in the advanced ENZ-theory of diffraction integrals”, arXiv: 1407.6589v1, (2014). [Google Scholar]
- F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.