Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14021
Number of page(s) 15
DOI https://doi.org/10.2971/jeos.2014.14021
Published online 11 June 2014
  1. S. Coëtmellec, N. Verrier, M. Brunel, and D. Lebrun, “General formulation of digital in-line holography from correlation with a chirplet function,” J. Europ. Opt. Soc. Rap. Public. 5, 10027 (2010). [CrossRef] [Google Scholar]
  2. M. Brunel, H. Shen, S. Coëtmellec, D. Lebrun, and K. Aït Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B-Lasers O. 106, 583–591 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  3. M. Brunel, H. Shen, S. Coëtmellec, D. Lebrun, and K. Aït Ameur, “Phase contrast metrology using digital in-line holography: general models and reconstruction of phase discontinuities,” J. Quant. Spectrosc. Ra. 126, 113–121 (2012). [Google Scholar]
  4. H. Shen, S. Coëtmellec, and M. Brunel, “Simultaneous 3D location and size measurement of spherical bubbles using cylindrical interferometric out-of-focus imaging,” J. Quant. Spectrosc. Ra. 131, 153–159 (2012). [Google Scholar]
  5. Y. Gu, and G. Gbur, “Scintillation of Airy beam arrays in atmospheric turbulence,” Opt. Lett. 35, 3456–3458 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  6. L. Wind, L. Hofer, A. Nagy, P. Winkler, A. Vrtala, and W. Szymanski, “Light scattering from droplets with inclusions and the impact on optical measurement of aerosols,” J. Aerosol Sci. 35, 1173–1188 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  7. A. Quérel, P. Lemaitre, and E. Porcheron, “Caractérisation des écoulements d’air produits lors de la chute d’une goutte de pluie,” in Proceedings to the 13th Congrès Francophone de Techniques Laser, 193–201 (CORIA, Rouen, 2012) in French. [Google Scholar]
  8. J. Wang, G. Gouesbet, G. Gréhan, Y. Han, and S. Saengkaew, “Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence,” J. Opt. Soc. Am. 28, 1849–1859 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  9. K. Y. Lai, N. Dayan, and M. Kerker, “Scavenging of aerosol particles by a falling water drop,” J. Atmos. Sci. 35, 674–682 (1978). [NASA ADS] [CrossRef] [Google Scholar]
  10. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [NASA ADS] [CrossRef] [Google Scholar]
  11. T. Alieva, and M. J. Bastiaans, “Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007). [CrossRef] [Google Scholar]
  12. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966). [Google Scholar]
  13. H. M. Ozaktas, Z. Zalevsky, and M. Alper Kutay, The Fractional Fourier Transform: with Applications in Optics and Signal Processing (Wiley, Chicester, 2001). [Google Scholar]
  14. Y. Cai, and Q. Lin, “Propagation of elliptical Gaussian beam through misaligned optical systems in spatial domain and spatial-frequency domain,” Opt. Laser Technol. 34, 415–421 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  15. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  16. N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, “Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction,” J. Opt. Soc. Am. A 25, 1459–1466 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  17. C. Zheng, D. Zhao, and X. Du, “Analytical expression of elliptical Gaussian beams through nonsymmetric systems with an elliptical aperture,” Optik 117, 296–298 (2005). [Google Scholar]
  18. J. J. Wen, and M. A. Breazeale, “A diffraction beam expressed as the superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752–1756 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  19. X. Du, and D. Zhao, “Propagation of decentered elliptical Gaussian beams in apertured and nonsymmetrical optical systems,” J. Opt. Soc. Am. A 23, 625–631 (2006). [CrossRef] [Google Scholar]
  20. X. Du, and D. Zhao, “Propagation of elliptical Gaussian beams in apertured and misaligned optical systems,” J. Opt. Soc. Am. A 23, 1946–1950 (2006). [CrossRef] [Google Scholar]
  21. X. Du, and D. Zhao, “Propagation of elliptical Gaussian beams modulated by an elliptical annular aperture,” J. Opt. Soc. Am. A 24, 444–450 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  22. A. J. E. M. Janssen, “New analytic results for the Zernike circle polynomials from a basic result in the Nijboer-Zernike diffraction theory,” J. Europ. Opt. Soc. Rap. Public. 6, 11028 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  23. A. J. E. M. Janssen, “Computation of Hopkins’ 3-circle integrals using Zernike expansions,” J. Eur. Opt. Soc. Rapid. Public. 6, 11059 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  24. A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  25. S. van Haver, and A. J. E. M. Janssen, “Advanced analytic treatment and efficient computation of the diffraction integrals in the extended Nijboer-Zernike theory,” J. Eur. Opt. Soc. Rapid. Public. 8, 13044 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  26. F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. Janssen, “Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” J. Opt. Soc. Am. A 22, 2569–2577 (2005). [CrossRef] [Google Scholar]
  27. J. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 858–870 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  28. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” PNAS 98, 11301–11305 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  29. S. Coëtmellec, D. Lebrun, and C. Özkul, “Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier transform,” Appl. Opt. 41, 312–319 (2002). [CrossRef] [Google Scholar]
  30. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” IMA J. Appl. Math. 25, 241–265 (1980). [NASA ADS] [CrossRef] [Google Scholar]
  31. A. C. McBride, and F. H. Kerr, “On Namias’s fractional Fourier transforms,” IMA J. Appl. Math. 39, 159–175 (1987). [CrossRef] [Google Scholar]
  32. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  33. N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Appl. Opt. 47, 4147–4157 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  34. S. Coëtmellec, C. Remacha, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, “Digital in-line holography with a spatially partially coherent beam,” J. Europ. Opt. Soc. Rap. Public. 6, 11060 (2011). [CrossRef] [Google Scholar]
  35. M. Leclercq, and P. Picart, “Digital Fresnel holography beyond the Shannon limits,” Opt. Express 20, 18303–18312 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  36. X. Wu, S. Meunier-Guttin-Cluzel, Y. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. Chen, et al., “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  37. F. Lamadie, L. Bruel, and M. Himbert, “Digital holographic measurement of liquid–liquid two-phase flows,” Opt. Laser. Eng. 50, 1716–1725 (2012). [CrossRef] [Google Scholar]
  38. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140–4148 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  39. J. Goodman, Introduction To Fourier Optics (Roberts and Company Publishers, Englewood, 2005). [Google Scholar]
  40. R. M. Aarts, and A. J. Janssen, “On-axis and far-field sound radiation from resilient flat and dome-shaped radiators,” J. Acoust. Soc. Am. 125, 1444–1455 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  41. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes, “Extended Nijboer–Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system,” J. Opt. Soc. Am. A 20, 2281–2292 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  42. M. J. Bastiaans, and T. Alieva, “Signal representation on the angular Poincaré sphere, based on second-order moments,” J. Opt. Soc. Am. A 27, 918–927 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  43. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970). [Google Scholar]
  44. W. J. Tango, “The circle polynomials of Zernike and their application in optics,” Appl. Phys. 13, 327–332 (1977). [CrossRef] [Google Scholar]
  45. H. Takahasi, and M. Mori, “Double exponential formulas for numerical integration,” Publ. RIMS, Kyoto Univ. 9, 721–741 (1974). [Google Scholar]
  46. M. Muhammad, and M. Mori, “Double exponential formulas for numerical indefinite integration,” J. Comput. Appl. Math. 161, 431–448 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  47. M. Mori, “Discovery of the double exponential transformation and its developments,” Publ. RIMS, Kyoto Univ. 41, 897–935 (2005). [CrossRef] [Google Scholar]
  48. C. Van Der Avoort, J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Optic. 52, 1695–1728 (2005). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.