Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14009
Number of page(s) 10
DOI https://doi.org/10.2971/jeos.2014.14009
Published online 05 February 2014
  1. H. J. Rabal, and R. A. Braga (ed.), Dynamic laser speckle and applications (CRC Press, New York, 2008). [CrossRef] [Google Scholar]
  2. I. Passoni, A. Dai Pra, H. Rabal, M. Trivi, and R. Arizaga, “Dynamic speckle processing using wavelets based entropy,” Opt. Commun. 246, 219–228 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  3. R. A. Braga, L. Dupuy, M. Pasqual, and R. R. Cardoso, “Live biospeckle laser imaging of root tissue,” Eur. Biophys. J. 38, 679–686 (2009). [CrossRef] [Google Scholar]
  4. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, et al. “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13904–13917 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  5. A. Mavilio, M. Fernández, M. Trivi, H. Rabal, and R. Arizaga, “Characterization of a paint drying process through granulometric analysis of speckle dynamic patterns,” Signal Process. 90, 1623–1630 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. D. Z. Ansari, and A. K. Nirala, “Biospeckle activity measurement of Indian fruits using the methods of cross-correlation and inertia moments,” Opt. – Int. J. Light Electron Opt. 124, 2180–2186 (2013). [CrossRef] [Google Scholar]
  7. R. R. Cardoso, A. G. Costa, C. M. B. Nobre, and R. A. Braga Jr., “Frequency signature of water activity by biospeckle laser,” Opt. Commun. 284, 2131–2136 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  8. G. H. Sendra, S. Murialdo, and I. Passoni, “Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa,” J. Phys. Conf. Ser. 90, 012064 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  9. G. H. Sendra, R. Arizaga, H. Rabal, and M. Trivi, “Decomposition of biospeckle images in temporary spectral bands,” Opt. Lett. 30, 1641–1643 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. F. I. M. Argoud, F. M. de Azevedo, and J. Mariano Neto, “Comparative study concerning to wavelet functions and its different applicabilities to pattern recognition in electroencephalogram,” Rev. Bras. Eng. Biomédica 20, 49–59 (2004). [Google Scholar]
  11. H. Rabal, N. Cap, M. Trivi, and M. Guzmán, “Q-statistics in dynamic speckle pattern analysis,” Opt. Lasers Eng. 50, 855–861 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  12. B. J. Berne, and R. Pecora, Dynamic light scattering with applications to chemistry, biology and physics (John Wiley & Sons, New York, 1976). [Google Scholar]
  13. A. F. da Silva, V. P. R. Minim, and M. M. Ribeiro, “Sensory evaluation of differents comercial marks of the organic coffee (Coffea arabica l.),” Ciênc. agrotec. 29, 1.224–1.230 (2005). [Google Scholar]
  14. L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denoising by principal component analysis with local pixel grouping,” Pattern Recogn. 43, 1531–1549 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  15. S. Jung, A. Sen, and J. S. Marron, “Boundary behavior in high dimension, low sample size asymptotics of PCA,” J. Multivariate Anal. 109, 190–203 (2012). [Google Scholar]
  16. T. O. Nielsen, R. B. West, S. C. Linn, O. Alter, M. A. Knowling, J. X. O’Connell, S. Zhu, et al., “Molecular characterisation of soft tissue tumours: a gene expression stude,” The Lancet 359, 1301–1307 (2002). [CrossRef] [Google Scholar]
  17. M. Ringnér, “What is principal component analysis?,” Nat. Biotechnol. 26, 303–304 (2008). [Google Scholar]
  18. C. R. Souza Filho, and A. Dinniss, “Periodic noise suppression techniques applied to remote sensing images,” Bol. IG-USP Sér. Cient. 28, 23–62 (1997). [CrossRef] [Google Scholar]
  19. G. Chen, and S. Qian, “Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage,” IEEE Trans. Geosci. Remote. Sens. 49, 973–980 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  20. H. Abdi, and L. J. Williams, “Principal component analysis,” Wiley Interdiscip. Rev.: Comput. Statistics 2, 433–459 (2010). [CrossRef] [Google Scholar]
  21. P. Xanthopoulos, P. P. M. Pardalos, and T. B. Trafalis, Robust data mining (Springer, New York, 2013). [CrossRef] [Google Scholar]
  22. J. D. Hadfield, “MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package,” J. Statistical Softw. 33, 1–22 (2010). [CrossRef] [Google Scholar]
  23. L. Batina, J. Hogenboom, and J. G. J. Van Woudenberg, “Getting more from PCA: First results of using principal component analysis for extensive power analysis,” Lect. Notes Comput. Sci. 7178, 383–397 (2012). [CrossRef] [Google Scholar]
  24. H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, and T. Ohura, “Evaluation of blood flow by laser speckle image sensing. Part 1,” Appl. Opt. 26, 5321–5325 (1987). [NASA ADS] [CrossRef] [Google Scholar]
  25. R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, “Display of the local activity using dynamical speckle patterns,” Opt. Eng. 41, 287–294 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  26. L. P. Specht, S. C. Callai, O. A. Khatchatourian, and R. Kohler, “Noise evaluation using the SPBI (Statistical Pass-By Index) for different pavements,” Rem: Rev. Esc. Minas 62, 439–445 (2009). [CrossRef] [Google Scholar]
  27. R. A. Braga, A. Souza, M. G. G. C. Vieira, E. V. R. Von Pinho, H. J. Rabal, and I. M. Dal Fabro, “Biospeckle laser as a potential test of seed viability,” Ciênc. Agrotec. 25, 645–649 (2001). [Google Scholar]
  28. S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18, 14519–14534 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  29. H. F. Kaiser, “The application of eletronic computers to factor analysis,” Educ. Psychol. Meas. 20, 111–117 (1960). [Google Scholar]
  30. P. R. Scalassara, C. S. Barin, and C. D. Maciel, “Electrochemical noise minimization using digital signal processing,” Semina: Ciênc. Exact. Tecnol. 25, 135–144 (2004). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.