Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14008
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2014.14008
Published online 05 February 2014
  1. G. König, K. Anders, and A. Frohn, “A new light-scattering technique to measure the diameter of periodically generated moving droplets,” J. Aerosol Sci. 17, 157–167 (1986). [CrossRef] [Google Scholar]
  2. R. Ragucci, A. Cavaliere, and P. Massoli, “Drop Sizing by laser light scattering exploiting intensity angular oscillation in the Mie regime,” Part. Part. Syst. Char. 7, 221–225 (1990). [CrossRef] [Google Scholar]
  3. K. H. Hesselbacher, K. Anders, and A. Frohn, “Experimental investigation of Gaussian beam effects on the accuracy of a droplet sizing method,” Appl. Optics 30, 4930–4935 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  4. A. R. Glover, S. M. Skippon, and R. D. Boyle, “Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems,” Appl. Optics 34, 8409–8421 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  5. N. Damaschke, H. Nobach, and C. Tropea, “Optical limits of particle concentration for multi-dimensional particle sizing techniques in fluid mechanics,” Exp. Fluids 32, 143–152 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  6. T. Kawaguchi, Y. Akasaka, and M. Maeda, “Size measurements of droplets and bubbles by advanced interferometric laser imaging technique,” Meas. Sci. Technol. 13, 308–316 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  7. J. V. Dave, “Scattering of visible light by large water spheres,” Appl. Optics 8, 155–164 (1969). [NASA ADS] [CrossRef] [Google Scholar]
  8. H. C. Van de Hulst, Light Scattering by Small Particles (Dover Publications, Mineola, 1981). [Google Scholar]
  9. G. Lacagnina, S. Grizzi, M. Falchi, F. Di Felice, and G. P. Romano, “Simultaneous size and velocity measurements of cavitating microbubbles using interferometric laser imaging,” Exp. Fluids 50, 1153–1167 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  10. Y. Hardalupas, S. Sahu, A. M. K. P. Taylor, and K. Zarogoulidis, “Simultaneous planar measurement of droplet velocity and size with gas phase velocities in a spray by combined ILIDS and PIV techniques,” Exp. Fluids 49, 417–434 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  11. W. J. Glantschnig, and S. H. Chen, “Light scattering from water droplets in the geometrical optics approximation,” Appl. Optics 20, 2499–2509 (1981). [NASA ADS] [CrossRef] [Google Scholar]
  12. H. Shen, S. Coetmellec, G. Grehan, and M. Brunel, “ILIDS revisited: elaboration of transfer matrix models for the description of complete systems,” Appl. Optics 51, 5357–5368 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  13. M. Maeda, Y. Akasaka, and T. Kawaguchi, “Improvements of the interferometric technique for simultaneous measurement of droplet size and velocity vector field and its application to a transient spray,” Exp. Fluids 33, 125–134 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  14. A. Querel, P. Lemaitre, M. Brunel, E. Porcheron, and G. Gréhan, “Real-time global interferometric laser imaging for the droplet sizing (ILIDS) algorithm for airborne research,” Meas. Sci. Technol. 21, 015306 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  15. D. Lin, N. C. Angarita-Jaimes, S. Chen, A. H. Greenaway, C. E. Towers, and D. P. Towers, “Three dimensional particle imaging by defocusing method with an annular aperture,” Opt. Lett. 33, 905–907 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  16. H. Shen, S. Coetmellec, and M. Brunel, “Cylindrical interferometric out-of-focus imaging for the analysis of droplets in a volume,” Opt. Lett. 37, 3945–3947 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  17. H. Shen, S. Coetmellec, and M. Brunel, “Simultaneous 3D location and size measurement of spherical bubbles using cylindrical interferometric out-of-focus imaging,” J. Quant. Spectrosc. Radiat. Transf. 131, 153–159 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  18. C. Mounaim-Rousselle, and O. Pajot, “Droplet sizing by interferometric Mie scattering in engine environment,” Proc. SPIE 3172, 700–707 (1997). [CrossRef] [Google Scholar]
  19. H. C. van de Hulst, and R. T. Wang, “Glare points,” Appl. Optics 30, 4755–4763 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  20. C. Palma, and V. Bagini, “Extension of the Fresnel transform to ABCD systems,” J. Opt. Soc. Am. A 14, 1774–1779 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  21. A. J. Lambert, and D. Fraser, “Linear systems approach to simulation of optical diffraction,” Appl. Optics 37, 7933–7939 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  22. H. T. Yura, and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987). [CrossRef] [Google Scholar]
  23. J. J. Wen, and M. Breazeale, “A diffraction beam expressed as the superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752–1756 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  24. J. W. Goodman, Speckle phenomena in optics. Theory and Applications (Roberts and Company Publishers, Greenwood Village, 2009). [Google Scholar]
  25. S. Dehaeck, and J. van Beeck, “Multifrequency interferometric particle imaging for gas bubble sizing,” Exp. Fluids 45, 823–831 (2008). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.