Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13078
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2013.13078
Published online 12 December 2013
  1. M. A. Calin, S. V. Parasca, R. Savastru, M. R. Calin, and S. Dontu, “Optical techniques for the noninvasive diagnosis of skin cancer,” J. Cancer. Res. Clin. Oncol. 139, 1083–1104 (2013). [CrossRef] [Google Scholar]
  2. N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013). [CrossRef] [Google Scholar]
  3. J. Q. Brown, T. M. Bydlon, S. A. Kennedy, M. L. Caldwell, J. E. Gallagher, M. Junker, L. G. Wilke, W. T. Barry, J. Geradts, and N. Ramanujam, “Optical spectral surveillance of breast tissue landscapes for detection of residual disease in breast tumor margins,” PLoS ONE 8, e69906 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  4. M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068 (2006). [CrossRef] [Google Scholar]
  5. A. M. Siddiqi, H. Li, F. Faruque, W. Williams, K. Lai, M. Hughson, S. Bigler, J. Beach, and W. Johnson, “Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells,” Cancer Cytopathol. 114, 13–21 (2008). [CrossRef] [Google Scholar]
  6. D. C. Heinz, and I. C. Chein, “Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,” IEEE T. Geosci. Remote 39, 529–545 (2001). [CrossRef] [Google Scholar]
  7. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985). [NASA ADS] [CrossRef] [Google Scholar]
  8. G. L. Alexandrino, and R. J. Poppi, “NIR imaging spectroscopy for quantification of constituents in polymers thin films loaded with paracetamol,” Anal. Chim. Acta 765, 37–44 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  9. D. Wu, and D.-W. Sun, “Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh,” Talanta 116, 266–276 (2013). [CrossRef] [Google Scholar]
  10. S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6, 439–446 (2007). [CrossRef] [Google Scholar]
  11. J. Spigulis, “Biophotonic technologies for non-invasive assessment of skin condition and blood microcirculation,” Latvian J. Phys. Techn. Sci. 49, 63–80 (2012). [NASA ADS] [Google Scholar]
  12. L. B. Twiggs, N. A. Chakhtoura, D. G. Ferris, L. C. Flowers, M. L. Winter, D. R. Sternfeld, M. Lashgari, A. F. Burnett, S. S. Raab, and E. J. Wilkinson, “Multimodal hyperspectroscopy as a triage test for cervical neoplasia: pivotal clinical trial results,” Gynecol. Oncol. 130, 147–151 (2013). [CrossRef] [Google Scholar]
  13. L. Görlitz, B. H. Menze, B. M. Kelm, and F. A. Hamprecht, “Processing spectral data,” Surf. Interface Anal. 41, 636–644 (2009). [CrossRef] [Google Scholar]
  14. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” Br. J. Cancer 26, 239–257 (1972). [CrossRef] [Google Scholar]
  15. M. P. Mattson, “Apoptosis in neurodegenerative disorders,” Nat. Rev. Mol. Cell Biol. 1, 120–130 (2000). [Google Scholar]
  16. S. W. Lowe, and A. W. Lin, “Apoptosis in cancer,” Carcinogenesis 21, 485–495 (2000). [CrossRef] [Google Scholar]
  17. P. Meier, A. Finch, and G. Evan, “Apoptosis in development,” Nature 407, 796–801 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  18. F. R. Bertani, L. Ferrari, V. Mussi, E. Botti, A. Costanzo, and S. Selci, “Living matter observations with a novel hyperspectral supercontinuum confocal microscope for VIS to near-IR reflectance spectroscopy,” Sensors 13, 14523–14542 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  19. U. Henseleit, T. Rosenbach, and G. Kolde, “Induction of apoptosis in human HaCaT keratinocytes,” Arch. Dermatol. Res. 288, 676–683 (1996). [CrossRef] [Google Scholar]
  20. R. Takasawa, H. Nakamura, T. Mori, and S. Tanuma, “Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UVB and UVC,” Apoptosis 10, 1121–1130 (2005). [CrossRef] [Google Scholar]
  21. G. F. Byrne, P. F. Crapper, and K. K. Mayo, “Monitoring land-cover change by principal component analysis of multitemporal landsat data,” Remote Sens. Environ. 10, 175–184 (1980). [NASA ADS] [CrossRef] [Google Scholar]
  22. M. Kamruzzaman, D.-W. Sun, G. ElMasry, and P. Allen, “Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013). [CrossRef] [Google Scholar]
  23. R. Carneiro, and R. Poppi, “A quantitative method using near infrared imaging spectroscopy for determination of surface composition of tablet dosage forms: an example of spirolactone tablets,” J. Braz. Chem. Soc. 23, 1570–1576 (2012). [CrossRef] [Google Scholar]
  24. G. Sciutto, P. Oliveri, S. Prati, M. Quaranta, S. Bersani, and R. Mazzeo, “An advanced multivariate approach for processing X-ray fluorescence spectral and hyperspectral data from non-invasive in situ analyses on painted surfaces,” Anal. Chim. Acta 752, 30–38 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  25. B. J. Tyler, G. Rayal, and D. G. Castner, “Multivariate analysis strategies for processing ToF-SIMS images of biomaterials,” Biomaterials 28, 2412–2423 (2007). [CrossRef] [Google Scholar]
  26. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999). [CrossRef] [Google Scholar]
  27. A. Cricenti, S. Selci, F. Ciccacci, A. C. Felici, C. Goletti, Y. Zhu, and G. Chiarotti, “Determination of the complex dielectric function of Si(111) 2 × 1, GaAs(110) and GaP(110) surfaces by polarized surface differential reflectivity,” Phys. Scripta 38, 199–203 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  28. S. Nannarone, and S. Selci, “Dielectric properties of the Si(111)2×1 surface: Optical constants and the energy-loss spectrum,” Phys. Rev. B 28, 5930–5936 (1983). [CrossRef] [Google Scholar]
  29. S. Selci, A. Cricenti, F. Ciccacci, A. C. Felici, C. Goletti, Z. Yong, and G. Chiarotti, “Dielectric functions of Si(111)2×1, Ge(111)2×1, GaAs(110) and GaP(110) surfaces obtained by polarized surface differential reflectivity,” Surf. Sci. 189, 1023–1027 (1987). [CrossRef] [Google Scholar]
  30. S. Selci, F. R. Bertani, and L. Ferrari, “Supercontinuum ultra wide range confocal microscope for reflectance spectroscopy of living matter and material science surfaces,” AIP Advances 1, 032143 (2011). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.