Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13050
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2013.13050
Published online 26 July 2013
  1. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  2. M. N. Armenise, C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, Advances in Gyroscope Technologies (Springer-Verlag, 2010). [Google Scholar]
  3. O. Kenji, “Semiconductor ring laser gyro,” Japanese patent # JP 60,148,185, filed 1984, issued 1985. [Google Scholar]
  4. M. Armenise, P. J. R. Laybourn, “Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE 3464, 81–90 (1998). [CrossRef] [Google Scholar]
  5. M. N. Armenise, M. Armenise, V. M. N. Passaro, and F. De Leonardis, “Integrated optical angular velocity sensor,” European patent # EP1219926, filed 2000, issued 2010. [Google Scholar]
  6. M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006). [CrossRef] [Google Scholar]
  7. W. Lawrence, “Thin film laser gyro,” US patent # 4,326,803, filed 1979, issued 1982. [Google Scholar]
  8. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  9. C. Ciminelli, F. Peluso, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized Design of Integrated Optical Angular Velocity Sensors Based on a Passive Ring Resonator,” J. Lightwave Technol. 27, 2658–2666 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  11. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  12. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  13. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in Proceedings to the 14th International Conference on Transparent Optical Networks (ICTON), 1–4 (IEEE Photonics Society, Coventry, UK, 2012). [Google Scholar]
  14. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q Spiral Resonator for Optical Gyroscope Applications: Numerical and Experimental Investigation,” IEEE Photonics J. 4, 1844–1854 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. Schuer, and A. Yariv, “Sagnac Effect in Coupled-Resonator Slow-Light Waveguide Structures,” Phys. Rev. Lett. 96, 05390 (2006). [Google Scholar]
  16. M. Terrel, M. J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photonics Rev. 3, 452–464 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  17. B. Z. Steinberg, J. Scheuer, and A. Boag, “Rotation Induced Super Structure in Slow-Light Waveguides with Mode Degeneracy,” J. Opt. Soc. Am. B 24, 1216–1224 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  18. R. Novitski, B. Z. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor,” Phys. Rev. A 85, 023813 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  19. J. R. E. Toland, Z. A. Kaston, C. Sorrentino, and C. P. Search, “Chirped area coupled resonator optical waveguide gyroscope,” Opt. Lett. 36, 1221–1223 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  20. C. Sorrentino, J. R. E. Toland, and C. P. Search, “Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide,” Opt. Express 20, 354–363 (2012). [Google Scholar]
  21. C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Multiple ring resonators in optical gyroscope,” in Proceedings to the 14th International Conference on Transparent Optical Networks (ICTON), 1–4 (IEEE Photonics Society, Coventry, UK, 2012). [Google Scholar]
  22. IEEE Standard for Inertial Sensor Terminology, IEEE Std 528-2001 (2001). [Google Scholar]
  23. R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  24. S. Mandal, K. Dasgupta, T. K. Basak, and S. K. Ghosh, “A generalized approach for modeling and analysis of ring-resonator performance as optical filter,” Opt. Commun. 264, 97–104 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  25. S. Ezekiel, and H. J. Arditty, Fiber-Optic Rotation Sensors and Related Technologies (Springer, New York, 1982). [CrossRef] [Google Scholar]
  26. G. Barbarossa, M. N. Armenise, and A. M. Matteo, “Triple-coupler ring-based optical guided-wave resonator,” Electron. Lett. 30, 131–133 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  27. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett. 26, 1019–1021 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  28. M. Sumetsky, and B. Eggleton, “Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11, 381–391 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  29. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.