Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13049
Number of page(s) 11
DOI https://doi.org/10.2971/jeos.2013.13049
Published online 26 July 2013
  1. T. Horiguchi,K. Shimizu,T. Kurashima,M. Tateda , and Y. Koyamada “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  2. X. Bao, J. Dhliwayo, N. Heron, D. Webb, and D. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol. 15, No. 10, 1842–1851 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  3. X. Bao, M. DeMerchant, A. Brown, and T. Bremner, “Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor,” J. Lightwave Technol 19, 1698–1704 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  4. R. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003). [Google Scholar]
  5. I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quant. Electron. 35, 1812–1816 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  6. A. Marble, K. Brown, and B. Colpitts, “Stimulated Brillouin scattering modeled through a finite difference time domain approach,” Proc. SPIE 5579, 404–414 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  7. V. Kalosha, E. Ponomarev, L. Chen, and X. Bao, “How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses,” Opt. Express 14, 2071–2078 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  8. A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19, 19233–19244 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  9. C. Chow, and A. Bers, “Chaotic stimulated Brillouin scattering in a finite-length medium,” Phys. Rev. A 47, 5144–5150 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  10. R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71, 4653 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  11. F. Gokhan, G. Griffiths, and W. Schiesser, “Method of lines solutions for the 3-wave model of Brillouin equations,” Engineering Computations (2013) [Google Scholar]
  12. http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf [Google Scholar]
  13. L. Zou, X. Bao , V. Afshar, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29, 1485 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  14. F. Ravet, L. Chen, X. Bao, L. Zou, and V. Kalosha, “Theoretical study of the effect of slow light on BOTDA spatial resolution,” Opt. Express 14, 10351–10358 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. Beugnot, M. Tur, S. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19, 7381–7397 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  16. W. Schiesser, and G. Griffiths, A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab (Cambridge University Press, New York, 2009). [CrossRef] [Google Scholar]
  17. L. Shampine, and M. Reichelt, “The MATLAB ODE Suite,” SIAM J. Sci. Comput. 18, No. 1, 1–22 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  18. L. Shampine, I. Gladwell and S. Thompson, Solving ODEs with MAT-LAB (First Edition, Cambridge University Press, New York, 2003). [CrossRef] [Google Scholar]
  19. http://www.pdecomp.net/TheCompendium/downloads.php under the compendium SRC of Chapter 6 directory. (accessed May 27, 2013) [Google Scholar]
  20. P. Wesseling, Principles of Computational Fluid Dynamics (Springer, Berlin, 2001). [CrossRef] [Google Scholar]
  21. C-W. Shu, “Essentially Non-oscillatory and Weighted Essential Non-oscillatory Schemes for Hyperbolic Conservation Laws,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C-W. Shu, E. Tadmor, Lecture Notes in Mathematics 1697, 325–432 (Springer, Berlin, 1998) . [CrossRef] [Google Scholar]
  22. G. Griffiths, and W. Schiesser, Traveling Wave Solutions of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple (Academic Press 2011). Available at: http://www.pdecomp.net/ (accessed November 27, 2012) [Google Scholar]
  23. http://www.pdecomp.net/TravelingWaves/downloadsTW.php [Google Scholar]
  24. F. Ravet, X. Bao, Y. Li, A. Yale, V. Kolosha, and L. Chen, “Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution,” IEEE Sens. J. 6, 3610–3618 (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.