Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13030
Number of page(s) 12
DOI https://doi.org/10.2971/jeos.2013.13030
Published online 25 April 2013
  1. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  2. L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285, 464–4647 (2012). [NASA ADS] [Google Scholar]
  3. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300–1320 (2008). [CrossRef] [Google Scholar]
  4. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  5. J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, “Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,” Opt. Lett. 27, 1558–1560 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  6. R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, “Group velocity dispersion of tapered fibers immersed in different liquids,” Opt. Express 12, 1700–1707 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  7. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fiber waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef] [Google Scholar]
  8. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30, 1980–1982 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  9. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408–9414 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  10. D. D. Hudson, E. C. Mägli, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  11. S. Richard, “Second-harmonic generation in tapered optical fibers,” J. Opt. Soc. Am. B 27, 1504–1512 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  12. A. Couillet, and Ph. Grelu, “Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285, 3493–3497 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  13. R. Ismaeel, T. Lee, M. Ding, N. G. R. Broderick, and G. Brambilla, “Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation,” Opt. Lett. 37, 5121–5123 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135–2140 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  15. K. P. Nayak, P. N. Melentiev, M. Morinaga, Fam Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15, 5431–5438 (2007). [CrossRef] [Google Scholar]
  16. X. Guo, and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  17. S. W. Harun, K. S. Lim, S. S. A. Damanhuri, and H. Ahmad, “Microfiber loop resonator based temperature sensor,” J. Europ. Opt. Soc. Rap. Public. 6, 11026 (2011). [CrossRef] [Google Scholar]
  18. L. Shan, G. Pauliat, L. M. Tong, and S. Lebrun “Optimal nanofiber dimensions for stimulated Raman scattering in the evanescent field,” in Proceedings to the European Optical Society Annual Meeting (EOS, Aberdeen, 2012). [Google Scholar]
  19. L. Shan, G. Pauliat, L. M. Tong, and S. Lebrun “Demonstration of stimulated Raman scattering in the evanescent field of a tapered nanofiber,” in Proceedings to the European Optical Society Annual Meeting (EOS, Aberdeen, 2012). [Google Scholar]
  20. R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev., 1–35 (2012). [Google Scholar]
  21. G. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 2007). [Google Scholar]
  22. A. W. Snyder, and J. Love, Optical Waveguide Theory (Kluwer Academic Publishers, London, 1983). [Google Scholar]
  23. J. Bures, Optique Guidée : fibres optiques et composants passifs tout-fibre (Presses internationales Polytechnique, Montreal, 2009). [Google Scholar]
  24. M. D. Turner, T. M. Monro, and S. Afshar, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman Scattering,” Opt. Express 17, 11565–11581 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  25. R. H. Stolen, Clinton Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  26. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt 11, 2489–2494 (1972). [NASA ADS] [CrossRef] [Google Scholar]
  27. E. Landahl, D. Baiocchi, and J. R. Thomson, “A simple analytic model for noise shaping by an optical fiber Raman generator,” Opt. Commun. 150, 339–347 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  28. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, et al., “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13, 4786–4791 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  29. S. Lebrun, P. Delaye, R. Frey, and G. Roosen, “High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber,” Opt. Lett. 32, 337–339 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  30. S. Lebrun, C. Buy, P. Delaye, R. Frey, G. Pauliat, and G. Roosen, “Optical characterizations of a Raman generator based on a hollow core photonic crystal fiber filled with a liquid,” J. Nonlinear Opt. Phys. & Mat. 19, 101–109 (2009). [Google Scholar]
  31. M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward Stimulated Raman Scattering,” Phys. Rev. 177, 580–599 (1969). [CrossRef] [Google Scholar]
  32. S. P. S. Porto, “Angular Dependence and Depolarization Ratio of the Raman Effect,” J. Opt. Soc. Am. 56, 1585–1589 (1966). [NASA ADS] [CrossRef] [Google Scholar]
  33. H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B: Condensed Matter 279, 295–301 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  34. M. J. Colles, and J. E. Griffiths, “Relative and absolute Raman scattering cross section in liquids,” J. Chem. Phys. 56, 3384–3391 (1971). [Google Scholar]
  35. J. E. Griffiths, “Raman-scattering cross-sections in strongly interacting liquid-systems - CH3OH, C2H5OH, I-C3H7OH, (CH3)2CO, H2O, and D2O,” J. Chem Phys. 60, 2556 (1974). [NASA ADS] [CrossRef] [Google Scholar]
  36. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997). [CrossRef] [Google Scholar]
  37. J. E. F. Rubio, J. M. Arsuaga, M. Taravillo, V. G. Baonza, and M. Caceres, “Refractive index of benzene and methyl derivatives: temperature and wavelength dependencies,” Exp. Therm. Fluid. Sci. 28, 887–891 (2004). [CrossRef] [Google Scholar]
  38. W. Proffitt, and S. P. S. Porto, “Depolarization ratio in Raman spectroscopy as a function of frequency,” J. Opt. Soc. Am. 63, 77–80 (1973). [NASA ADS] [CrossRef] [Google Scholar]
  39. Y. Kato, and H. Takuma, “Absolute Measurement of Raman-Scattering Cross Sections of Liquids,” J. Opt. Soc. Am. 61, 347–350 (1971). [NASA ADS] [CrossRef] [Google Scholar]
  40. F. J. McClung, and D. Weiner, “Measurement of Raman Scattering Cross Sections for Use in Calculating Stimulated Raman Scattering Effects,” J. Opt. Soc. Am. 54, 641–641 (1964). [NASA ADS] [CrossRef] [Google Scholar]
  41. W. R. L. Clements, and B. P. Stoicheff, “Raman linewidths for stimulated threshold and gain calculations,” Appl. Phys. Lett. 12, 246–248 (1968). [NASA ADS] [CrossRef] [Google Scholar]
  42. V. G. Foster, “Determination of the refractive index dispersion of liquid nitrobenzene in the visible and ultraviolet,” J. Phys. D: Appl. Phys. 25, 525–529 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  43. K. Sakamoto, G. Mizutani, and S. Ushioda, “Absolute Raman-scattering cross section of a surface-adsorbed layer: Amorphous nitrobenzene on Ni(111),” Phys. Rev. B 48, 8993–9005 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  44. J.G. Skinner, and W. G. Nilsen, “Absolute Raman Scattering Cross-Section Measurement of the 992 cm−1 Line of Benzene,” J. Opt. Soc. Am. 58, 113–118 (1968). [NASA ADS] [CrossRef] [Google Scholar]
  45. K. Narendra, P. Narayanamurthy, and Ch. Srinivasu, “Refractive Indices of Binary Liquid Mixture at Different Temperatures,” Asian Journal of Applied Sciences 4, 535–541 (2011). [CrossRef] [Google Scholar]
  46. R. Mehra, “Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures,” Proceedings of the Indian Academy of Sciences-Chemical Sciences 115, 147–154 (2003). [CrossRef] [Google Scholar]
  47. J. R. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef] [Google Scholar]
  48. P. D. Maker, and R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,” Phys. Rev. 137, A801 (1965). and errata, P. D. Maker, and R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,” Phys. Rev. A 148, 990–990 (1966). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.