Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13011
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2013.13011
Published online 31 January 2013
  1. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and Ch. Depeursinge, “Digital holographic microscopy: a non invasive contrast imaging technique allowing quantitative visualization of living cells with sub wavelength accuracy,” Opt. Lett., 30(5), 468–470 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  2. L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process,” Opt. Express 18(20), 20585–20594 (2010) [NASA ADS] [CrossRef] [Google Scholar]
  3. P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express 18(21), 21990–22003 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  4. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Reviews 5, 81–101 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  5. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2010). [Google Scholar]
  6. Z. Wang, I. S. Chun, X. Li, Z. Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  7. S. Furhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  8. M. Warber, S. Zwick, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” P. Soc. Photo.-Opt. Ins. 7442, 74420E–74420E-12 (2009). [Google Scholar]
  9. M. Hasler, T. Haist, W. Osten, “SLM-based microscopy,” P. Soc. Photo.-Opt. Ins. 8430, 84300V–84300V-8 (2012). [Google Scholar]
  10. V. Micó, and J. García, “Common-path phase-shifting lensless holographic microscopy,” Opt. Lett. 35(23), 3919–3921 (2010). [CrossRef] [Google Scholar]
  11. J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15(5), 2244–2250 (2007). [CrossRef] [Google Scholar]
  12. X. Lai, Y. Zhao, X. Lv, Z. Zhou, and S. Zeng, “Fluorescence holography with improved signal-to-noise ratio by near image plane recording,” Opt. Lett. 37(13), 2445–2447 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  13. B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20(8), 9109–9121 (2012). [CrossRef] [Google Scholar]
  14. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  15. P. Bouchal, and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37(14), 2949–2951 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  16. P. Bouchal, J. Kapitán, R. Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19(16), 15603–15620 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  17. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed] [Google Scholar]
  18. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13(7), 2444–2452 (2005). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.