Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
|
|
---|---|---|
Article Number | 13010 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2971/jeos.2013.13010 | |
Published online | 31 January 2013 |
- J. A. Dobrowolski, F. C. Ho, and A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983). [CrossRef] [Google Scholar]
- J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E. Sci. Instrum. 9, 1002–1004 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E. Sci. Instrum. 16, 1214–1222 (1983). [NASA ADS] [CrossRef] [Google Scholar]
- R. Swanepoel, “Determining refractive index and thickness of thin films from wavelengh measurements only,” J. Opt. Soc. Am. A. 2, 1339–1343 (1985). [NASA ADS] [CrossRef] [Google Scholar]
- I. Ohlıdal, D. Franta, M. Ohlıdal, and K. N. til, “Optical characterization of nonabsorbing and weakly absorbing thin films with the wavelengths related to extrema in spectral reflectances,” Appl. Opt. 40, 5711–5717 (2001). [CrossRef] [Google Scholar]
- M. Kar, “Errorminimization in the envelope method for the determination of optical constants of a thin film,” Surf. Interface Anal. 42, 145–150 (2010). [CrossRef] [Google Scholar]
- S. Humphrey, “Direct calculation of the optical constants for a thin film using a midpoint envelope,” Appl. Opt. 46, 4660–4666 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20, 15734–15751 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- http://www.heliosoptical.net/Corning_HPFS_7980_Standard_Grade_Fused_Silica.pdf [Google Scholar]
- http://www.ohara-gmbh.com/e/katalog/d_s-lah66_e.html. [Google Scholar]
- R. R. Willey, Practical Production of Optical Thin Films (Second Edition, Willey Optical Consultants, Charlevoix, 2012). [Google Scholar]
- P. G. Verly, A. V. Tikhonravov, and M. K. Trubetskov, “Refinement algorithm for the synthesis of inhomogeneous optical coatings,” Appl. Opt. 36, 1487–1495 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThA6. [Google Scholar]
- E. D. Palik,Handbook of Optical Constants of Solids (Academic Press, New York, 1985). [Google Scholar]
- B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- H. A. Macleod, Thin-film Optical Filters (Institute of Physics Publishing, Bristol and Philadelphia, 2001). [CrossRef] [Google Scholar]
- G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, “Characterization of thin film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377-378, 68–73 (2000). [CrossRef] [Google Scholar]
- B. v. Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the Tauc–Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41, 3137–3141 (2002). [CrossRef] [Google Scholar]
- M. Kildemo, R. Ossikovski, and M. Stchakovsky, “Measurement of absorption edge of thick transparent substrates using incoherent reflection model and spectroscopic UV-visible–near IR ellipsometry,” Thin Solid Films 313-314, 108–113 (1998). [Google Scholar]
- Z. G. Hu, Z. M. Huang, Y. N. Wu, S. H. Hu, G. S. Wang, J. H. Ma, and J. H. Chu, “Optical characterization of ferrelectric Bi3.25La0.75Ti3O12 thin films,” Eur. Phys. J. B. 38, 431–436 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- R. D. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–556 (1926). [NASA ADS] [CrossRef] [Google Scholar]
- L. Gao, F. Lemarchand, and M. Lequime, “Reverse engineering from spectrophotometric measurements: performances and efficiency of different optimization algorithms,” Appl. Phys. A. 108, 87–889 (2012). [Google Scholar]
- T. Csendes, “Nonlinear parameter estimation by global optimization - efficiency and reliability,” Acta Cybernetica 8, 361–370 (1988). [Google Scholar]
- L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- K. D. Hendrix, and J. Oliver, “Optical interference coatings design contest 2010: solar absorber and Fabry-Perot etalon,” Appl. Opt. 50, C286–C300 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- M. Tilsch, and K. Hendrix, “Optical interference coatings design contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47, C55–C69 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. Tilsch, K. Hendrix, and P. Verly, “Optical interference coatings design contest 2004,” Appl. Opt. 45, 1544–1554 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- A. O’Keefe, and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef] [Google Scholar]
- I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [NASA ADS] [CrossRef] [Google Scholar]
- http://refractiveindex.info/ [Google Scholar]
- S. Xiong, W. Huang, and Y. Zhang, “The properties of IAD oxide optical coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2004), paper MB3. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.