Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
|
|
---|---|---|
Article Number | 13004 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2013.13004 | |
Published online | 31 January 2013 |
- H. F. Talbot, “Facts relating to Optical Science,” Philos. Mag. 9, 401–407 (1836). [Google Scholar]
- L. Rayleigh, “On Copying Diffraction Gratings and some Phenomena Connected Therewith,” Philos. Mag. 11, 196 (1881). [Google Scholar]
- M. Thakur, C. J. Tay, and C. Quan, “Surface profiling of a transparent object by use of phase-shifting Talbot interferometry,” Appl. Optics 44 (14), 2541–2545 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- S. P. Trivedi, S. Prakash, S. Rana, and O. Sasaki, “Real-time slope mapping and defect detection in bent plates using Talbot interferometry,” Appl. Optics 49 (4), 897–903 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. Dhanotia, and S. Prakash, “Automated collimation testing by incorporating the Fourier transform method in Talbot interferometry,” Appl. Optics 50 (10), 1446–1452 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. Zheludev, “Focusing of light by a nano-hole array,” Frontier in Optics Conference, Rochester, New York, USA (2006). [Google Scholar]
- H. L. Kung, A. Bhatnagar, and D. A. B. Miller, “Transform spectrometer based on measuring the periodicity of Talbot self-images,” Opt. Lett. 26 (21), 1645–1647 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- S. De Nicola, P. Ferraro, G. Coppola, A. Finizio, G. Pierattini, and S. Grilli, “Talbot self-image effect in digital holography and its application to spectrometry,” Opt. Lett. 29 (1), 104–106 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- S. Jeon, V. Malyarchuk, and J. A. Rogers, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14 (5), 2300–2308 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010). [NASA ADS] [CrossRef] [Google Scholar]
- L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18 (19), 19485 (2010). [CrossRef] [Google Scholar]
- H. H. Solak, Ch. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19 (12), 10686 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- W. Klaus, Y. Arimoto, K. Kodate, “High-performance Talbot array illuminators,” Appl. Optics 37 (20), 4357–4365 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- L.-W. Zhu, X. Yin, Z. Hong, C.-S. Guo, “Reciprocal vector theory for diffractive self-imaging,” J. Opt. Soc. Am. A 25 (1), 203–210 (2008). [Google Scholar]
- W. Qu, L. Liu, D. Liu, Y. Zhi, and W. Lu, “Near-field hexagonal array illumination based on fractional Talbot effect,” Optik 118, 330–334 (2006). [Google Scholar]
- L. I. Bluestein, “A linear filtering approach to the computation of discrete Fourier Transform,” Transaction on Audio and Electroacoustic AU 18 (3), 451–455 (1968). [Google Scholar]
- J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Co., Singapore, 1996). [Google Scholar]
- L.-W. Zhu, X. Yin, Z. Hong, and C.-S. Guo, “Reciprocal vector theory for diffractive self-imaging,” J. Opt. Soc. Am. A 25 (1), 203–210 (2007). [Google Scholar]
- S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, J. A Rogers, “Fabrication complex three dimensional nanostructures with high-resolution conformable phase masks,” PNAS 101 (34), 12428–12433 (2004). [CrossRef] [Google Scholar]
- U. Jauerning, S. Schröter, S. Brückner, M. Vlcek, and H. Bartelt, “Strukturierte Gitterkopplung auf den Endflächen von Lichtleitfasern für Anwendungen zur spektralen Filterung und Sensorik,” DGaO 2010, 1614–8436 (2010). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.