Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12052
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2012.12052
Published online 16 December 2012
  1. S. A. Kalogirou, “Solar thermal collectors and applications,” Prog. Energ. Combust. 30, 231–295 (2004). [CrossRef] [Google Scholar]
  2. T. Yan, and Y. Chen “Review of study on solid particle solar receivers,” Renew. Sust. Energ. Rev. 14, 265–276 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  3. E. Sani, L. Mercatelli, S. Barisonb, C. Pagurab, F. Agrestib, L. Collac, and P. Sansoni, “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energ. Mat. Sol. C. 95, 2994–3000 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  4. E. Sani, L. Mercatelli, F. Francinia, J.-L. Sansb, and D. Sciti, “Ultra-refractory ceramics for high-temperature solar absorbers,” Scripta Mater. 65, 775–778 (2011). [CrossRef] [Google Scholar]
  5. E. Sani, L. Mercatelli, P. Sansoni, L. Silvestroni, and D. Sciti, “Spectrally selective ultra-high temperature ceramic absorbers for high-temperature solar plants,” J. Renew. Sust. Energ. 4, 033104 (2012). [CrossRef] [Google Scholar]
  6. E. Sani, L. Mercatelli, D. Fontanil, J.-L. Sans, and D. Sciti, “Hafnium and tantalum carbides for high temperature solar receivers,” J. Renew. Sust. Energ. 3, 063107 (2011). [CrossRef] [Google Scholar]
  7. D. Sciti, L. Silvestroni, L. Mercatellib, J.-L. Sansc, and E. Sani, “Suitability of ultra-refractory diboride ceramics as absorbers for solar energy applications,” Sol. Energ. Mat. Sol. C. 109, 8–16 (2012). [Google Scholar]
  8. C. C. Agrafiotis, I. Mavroidis, A. G. Konstandopoulosa, B. Hoffschmidtb, P. Stobbe, M. Romero, V. Fernandez-Quero, “Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation,” Sol. Energ. Mat. Sol. C. 91, 474–488 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  9. D. Sciti, and M. Nygren, “Spark plasma sintering of ultra refractory compounds,” J. Mater. Sci. 43, 6414–6421 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  10. D. Sciti, S. Guicciardi, and M. Nygren, “Spark plasma sintering and mechanical behaviour of ZrC-based composites,” Scripta Mater. 59, 638–641 (2008). [CrossRef] [Google Scholar]
  11. D. Sciti, S. Guicciardi, and M. Nygren, “Densification and mechanical behaviour of HfC and HfB2 fabricated by spark plasma sintering,” J. Am. Ceram. Soc. 91, 1433–1440 (2008). [CrossRef] [Google Scholar]
  12. D. Sciti, L. Silvestroni, G. Celotti, C. Melandri, and S. Guicciardi, “Sintering and mechanical properties of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites,” J. Am. Ceram. Soc. 91, 3285–3291 (2008). [CrossRef] [Google Scholar]
  13. D. Sciti, S. Guicciardi, A. Bellosi, and G. Pezzotti, “Properties of a pressureless sintered ZrB2-MoSi2 ceramic composite,” J. Am. Ceram. Soc. 89, 2320–2322 (2006). [CrossRef] [Google Scholar]
  14. D. Sciti, and A. Bellosi, “Effects of additives on densification, microstructure and properties of liquid phase sintered silicon carbide,” J. Mater. Sci. 35, 3849–3855 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  15. M. Balat-Pichelin, et al., “Concentrated solar energy as a diagnostic tool to study materials under extreme conditions,” J. Sol. Energ. Eng. 124, 215–222 (2002). [CrossRef] [Google Scholar]
  16. T. Paulmier, et al., “Physico-chemical behavior of carbon materials under high temperature and ion irradiation,” Appl. Surf. Sci. 180, 227–245 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  17. T. Paulmier, M. Balat-Pichelin, and D. Le Quéau, “Structural modifications of carbon-carbon composites under high temperature and ion irradiation,” Appl. Surf. Sci. 243, 376–393 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  18. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983). [Google Scholar]
  19. D. Hernandez, “A concept to determine the true temperature of opaque materials using a tricolor pyroreflectometer,” Rev. Sci. Instrum. 76, 024904 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  20. D. Hernandez, G. Olalde, A. Beck, and E. Milcent, “Bicolor pyroreflectometer using an optical fiber probe,” Rev. Sci. Instrum. 66, 5548–5551 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  21. D. Hernandez, J. L. Sans, A. Netchaieff, P. Ridoux, and V. Le Sant, “Experimental validation of a pyroreflectometric method to determine the true temperature on opaque surface without hampering reflections,” Measurement 42, 836–843 (2009). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.