Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12053 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.2971/jeos.2012.12053 | |
Published online | 22 December 2012 |
- W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [Google Scholar]
- T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [Google Scholar]
- S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film”, Nano Lett. 9 (1), 235 (2009). [Google Scholar]
- Z. Sun, and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10 (5), 1936–1940 (2010). [Google Scholar]
- G. G. Zheng, and X. Y. Li, “Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings,” J. Opt. A - Pure Appl. Opt. 11 (7), 075002 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189–193 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- D. D. Ceglia, M. A. Vincenti, and M. Scalora, “Wideband plasmonic beam steering in metal gratings,” Opt. Lett. 37, 271–273 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15, 9541–9546 (2007). [CrossRef] [Google Scholar]
- M. A. Vincenti, A. D’Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant subwavelength slits filled with a nonlinear material,” JOSA B 26, 301–307 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37, 3084–3086 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator,” Opt. Lett. 37, 2532–2534 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- P. Li, T. Sasaki, L.F. Pan, and K. Hane, “Comb-drive tracking and focusing lens actuators integrated on a silicon-on-insulator wafer,” Opt. Express 20, 627–634 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101–073101-8 (2005). [CrossRef] [Google Scholar]
- W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8 (1), 281 (2008). [Google Scholar]
- V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals,” Adv. Mater. 20, 3528–3532 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys. 110, 093102-1–9 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- M. Bahramipanah, M. S. Abrishamian, and S. A. Mirtaheri, “Tunable anisotropic photonic crystal channel-drop filter,” J. Opt. 13, 015103-1–8 (2011). [NASA ADS] [Google Scholar]
- M. Dridi, and A. Vial, “FDTD Modeling of Gold Nanoparticles in a Nematic Liquid Crystal: Quantitative and Qualitative Analysis of the Spectral Tunability,” J. Phys. Chem. C 114, 9541–9545 (2010). [CrossRef] [Google Scholar]
- M. Bahramipanah, S. A. Mirtaheri, and M. S. Abrishamian, “Electrical beam steering with metal-anisotropic-metal structure,” Opt. Lett. 37 (4), 1–3 (2012). [Google Scholar]
- P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005). [Google Scholar]
- L. Dou, and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials”, Microw. Opt. Techn. Let. 48, 2083–2090 (2006). [CrossRef] [Google Scholar]
- W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “An FDTD method for the simulation of dispersive metallic structures,” Opt. Quant. Electron. 38, 843–856 (2006). [Google Scholar]
- A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Norwood (MA), 2005). [Google Scholar]
- J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.