Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12044
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2012.12044
Published online 31 October 2012
  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [Google Scholar]
  2. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [Google Scholar]
  3. W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (1-4) (2004). [NASA ADS] [CrossRef] [Google Scholar]
  4. H. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwave-length hole arrays”, Opt. Express 12, 3629–3651 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  5. P. Lalanne, and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  6. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  7. F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  8. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  9. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222–9238 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  10. H. Liu, and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  11. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef] [Google Scholar]
  12. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003). [CrossRef] [Google Scholar]
  13. E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  14. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (1-10) (2005). [NASA ADS] [CrossRef] [Google Scholar]
  15. M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surface plasmon polaritons,” Opt. Express 17, 10385–10392 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  16. S. B. Raghunathan, C. H. Gan, T. van Dijk, B. Ea Kim, H. F. Schouten, W. Ubachs, P. Lalanne, and T. D. Visser, “Plasmon switching: Observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit,” Opt. Express 20, 15326 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  17. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (1-4) (2005). [NASA ADS] [CrossRef] [Google Scholar]
  18. L. Chen, J. T. Robinson, and M. Lipson, “Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface,” Opt. Express 14, 12629–12636 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  19. J. Alegret, P. Johansson, and M. Käll, “Green’s tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films,” New J. Phys. 10, 10544 (1-13) (2008). [Google Scholar]
  20. F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B 84, 125414 (1-9) (2011). [CrossRef] [Google Scholar]
  21. H. Xu, P. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282, 1467–1471 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  22. M. G. Velasco, P. Cassidy, and H. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun. 284, 4805–4809 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  23. L. Novotny, and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  24. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings, (Springer-Verlag, Berlin, 1988). [CrossRef] [Google Scholar]
  25. Comsol Multyphisics RF Module, www.comsol.com [Google Scholar]
  26. J. Jin, The Finite Element Method in Electromagnetics, (2nd Edition, Wiley, New York, 2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.