Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12025 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.2971/jeos.2012.12025 | |
Published online | 03 July 2012 |
- S. Eustis, and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006). [CrossRef] [Google Scholar]
- A. K. Sarychev, and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composits,” Phys. Rep. 335, 275–371 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- G. K. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 115, 1403–1409 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef] [Google Scholar]
- L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sensor. Actuat. B 54, 118–124 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, et.al, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc. 131, 8407–8409 (2009). [CrossRef] [Google Scholar]
- S. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18, A528–A535 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19, A64–A71 (2011). [CrossRef] [Google Scholar]
- C. Chen, J. Wang, F. Tsai, Y. Lu, Y. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Express 17, 14186–14198 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18, 27226–27237 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. Son, L. K. Verma, A. J. Danner, C. S. Bhatia, and H. Yang, “Enhancement of optical transmission with random nanohole structures,” Opt. Express 19, A35–A40 (2010). [Google Scholar]
- C. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield Optimization and Time Structure of Femtosecond Laser Plasma Kα Sources,” Phys. Rev. Lett. 84, 4846–4849 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- P. Gibbon and O. N. Rosmej, “Stability of nanostructure targets irradiated by high intensity laser pulses,” Plasma. Phys. Contr. F. 49, 1873–1883 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- M. H. Mahdieh, R. Fazeli, and G. J. Tallents, “Soft x-ray enhancement from a porous nano-layer on metal targets irradiated by long laser pulses,” J. Phys. B-At. Mol. Opt. 42, 125602 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- P. Gibbon, M. Masek, U. Teubner, W. Lu, M. Nicoul, U. Shymanovich, A. Tarasevitch, P. Zhou, K. Sokolowski-Tinten, and D. V. der Linde, “Modelling and optimisation of fs laser-produced Kα sources,” Appl. Phys. A-Mater. 96, 23–31 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Zhu, “Hot-Electron Transfer from Semiconductor Nanocrystals,” Science 328, 1543–1547 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. Li, S. Chen, P. Yu, H. Cheng, W. Zhou, and J. Tian, “Large enhancement and uniform distribution of optical near field through combining periodic bowtie nanoantenna with rectangular nanoaperture array,” Opt. Lett. 36, 4014–4016 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- J. Laverdant, S. Buil, J. P. Hermier, and X. Quelin, “Near-field intensity correlations on nanoscaled random silver-dielectric films,” J. Nanophotonics 4, 049505 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. Sancho-Parramon, “Near-field coupling of metal nanoparticles under tightly focused illumination,” Opt. Lett. 36 3527 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- M. Nikbakht and M. H. Mahdieh, “Optical responses of gold nanoparticles undergoing a change to cluster aggregates and laser beam characteristics effect,” J. Phys. Chem. C 115, 1561–1568 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- M. Born, and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1987). [Google Scholar]
- W. J. Wild, and C. L. Giles, “Goos-Hanchen shift from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982). [NASA ADS] [CrossRef] [Google Scholar]
- A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271–5283 (1998). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.