Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12024
Number of page(s) 9
DOI https://doi.org/10.2971/jeos.2012.12024
Published online 03 July 2012
  1. S. Martin, P. E. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  2. K. Curtis, and D. Psaltis, “Characterization of the Du-Pont photopolymer for 3-dimensional holographic storage,” Appl. Optics 33(23), 5396–5399, (1994). [NASA ADS] [CrossRef] [Google Scholar]
  3. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  4. V. A. Barachevskii, “Photopolymerizable recording media for three-dimensional holographic optical memory,” High. Energy Chem. 40, 131–141 (2006). [CrossRef] [Google Scholar]
  5. W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” SPIE 2043, 2–13 (1993). [NASA ADS] [Google Scholar]
  6. H.-Y. S. Li, and D. Psaltis, “Three-dimensional holographic disks,” Appl. Optics 33, 3764–3774 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  7. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  8. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003). [CrossRef] [Google Scholar]
  9. J. T. Sheridan, and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000). [Google Scholar]
  10. K. Pavani, I. Naydenova, S. Martin, V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A-Pure Appl. Opt. 9, 43–48 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  11. I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide–based photopolymer surface,” Opt. Express 13, 4878–4889 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  12. S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express 19, 10896–10906 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  13. J. T. Sheridan, M. Downey, and F. T. O’Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A-Pure Appl. Opt. 3, 477–488 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  14. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer Diffusion Rates in Photopolymer Material: Part I: Low Spatial Frequency Holographic Gratings,” J. Opt. Soc. Am. B 28, 658–666 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  16. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  17. S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278, 28–33 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  18. K. R. Sun, Y. S. Kang, and B. K. Kim, “Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives,” Polymer Letters 5, 73–81 (2010). [Google Scholar]
  19. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCS),” Annu. Rev. Mater. Sci. 30, 83–115 (2000). [Google Scholar]
  20. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Optics 47, 2556–2563 (2008). [Google Scholar]
  21. A. J. Bergeron, F. Gauvin, D. Gagnon, H. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid crystal spatial light modulator,” Appl. Optics 34, 5133–5139 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  22. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Optics 48, 4403–4413 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  23. M. Born, and E. Wolf, Principles of Optics (Pergamon Press. Oxford, 1980). [Google Scholar]
  24. M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15, 12425 (2007). [CrossRef] [Google Scholar]
  25. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2010). [Google Scholar]
  26. G. Zhao, and P. Mouroulis, “Extension of a diffusion model for holographic photopolymers,” J. Mod. Opt. 42, 2571–2573 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  27. S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43–49 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  28. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121–5128 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  29. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  30. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  31. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010). [CrossRef] [Google Scholar]
  32. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formations,” Macromolecules 43, 9462–9472 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  33. S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. 33, 1626–1629 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  34. S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express 20, 11218–11231 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  35. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuño, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  36. A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612–1619 (2000). [CrossRef] [Google Scholar]
  37. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17, 18279–18291 (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.