Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
|
|
---|---|---|
Article Number | 11046 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2971/jeos.2011.11046 | |
Published online | 04 November 2011 |
- A. Morel, and B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects” Appl. Opt. 32, 6864–6879 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters” Int. J. Remote Sens. 10, 1373–1394 (1989). [NASA ADS] [CrossRef] [Google Scholar]
- G. Tilstone, G. F. Moore, R. Sørensen, R. Doerffer, R. Pasterkamp, and P. V. Jørgensen, “REVAMP Protocols. REVAMP methodologies Regional Validation of MERIS Chlorophyll products in North Sea coastal waters” ESA Publication EVG1 - CT - 2001 âǍŞ 00049, Noordwijk, Netherlands (2003). [Google Scholar]
- J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems (2nd edition, Cambridge University Press, Cambridge, 1994). [CrossRef] [Google Scholar]
- E. Aas, “Spectral Slope Of Yellow Substance: Problems Caused By Small Particles” in Proceedings to Ocean Optics XV (Ocean Optics, Monaco, 2002). [Google Scholar]
- C. E. W. Steinberg, Ecology of Humic Substances in Freshwater, 1 (Springer, München, 2003). [CrossRef] [Google Scholar]
- R. Doerffer, “Protocols for the Validation of MERIS Water Products” ESA Publication PO-TN-MEL-GS-0043, 1–42 (Noordwijk, Netherlands, 2002). [Google Scholar]
- S. G. H. Simis, M. Tijdens, H. L. Hoogveld, and H. J. Gons, “Optical signatures of the filamentous cyanobacterium Leptolyngbya boryana during mass viral lysis” Limnol. Oceanogr. 52, 184–197 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- H. G. TrÃijper, and C. M. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria” J. Bacteriol. 94, 1255–1256 (1967). [CrossRef] [Google Scholar]
- J. T. O. Kirk, “Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity” Appl. Opt. 34, 4397–4408 (1995). [CrossRef] [Google Scholar]
- J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling” Appl. Opt. 36, 6123–6127 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- V. E. Brando, J. T. O. Kirk, P. J. Daniel, K. Oubelkheir, L. Clementson, and A. G. Dekker, “Measured sensitivity of the PSICAM: effects of anisotropic light source, fluorescence, temperature and salinity” in Proceedings to Ocean Optics XVII (Ocean Optics, Fremantle, 2004). [Google Scholar]
- M. L. Laanen, Yellow Matters - Improving the remote sensing of Coloured Dissolved Organic Matter in inland freshwaters (Ph.D. dissertation, Vrije Universiteit Amsterdam, 2007). [Google Scholar]
- R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integratingcavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence” Limnol. Oceanogr.-meth. 5, 1–12 (2007). [CrossRef] [Google Scholar]
- R. Röttgers, and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating cavity absorption meter” Limnol. Oceanogr.-meth. 5, 126–135 (2007). [CrossRef] [Google Scholar]
- A. G. Dekker, and S. W. M. Peters, “The use of the Thematic Mapper for the analysis of eutrophic lakes: A case study in The Netherlands” Int. J. Remote Sens. 14, 799–822 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- K. Kalle, “The problem of the gelbstoff in the sea” Oceanogr. Mar. Biol. 4, 91–104 (1966). [Google Scholar]
- A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef] [Google Scholar]
- S. A. Green, and N. V. Blough, “Optical absorption and fluorescence of chromophoric dissolved organic matter in natural waters” Limnol. Oceanogr. 39, 1903–1916 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- C. A. Stedmon, S. Markager, and H. Kaas, “Optical Properties and Signatures of Chromophoric Dissolved Organic Matter (CDOM) in Danish Coastal Waters” Estuar. Coast. Shelf S. 51, 267–278 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- C. J.-Y. Lerebourg, D. A. Pilgrim, G. D. Ludbrook, and R. Neal, “Development of a point source integrating cavity absorption meter” J. Opt. A-Pure Appl. Op. 4, 56–65 (2003). [Google Scholar]
- R. Röttgers, W. Schoenfeld, P. Kipp, and R. Doerffer, “Practical test of a point-source integrating-cavity absorption meter (PSICAM): the performance of different collector assemblies” Appl. Opt. 44, 5549–5560 (2005). [CrossRef] [Google Scholar]
- R. M. Pope, and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water, II. Integrating cavity measurements” Appl. Opt. 36, 8710–8723 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “Optical properties of pure water” in Proceedings to Ocean Optics XII 174–183 (Washington, Ocean Optics, 1994). [NASA ADS] [CrossRef] [Google Scholar]
- R. A. Leathers, V. T. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter” Appl. Opt. 39, 1–10 (2000). [Google Scholar]
- A. G. Dekker, V. E. Brando, P. J. Daniel, J. M. Anstee, and L. Clementson, “PSICAM - FROM MYTH TO REALITY” in Proceedings to the Seventh International Conference on Remote sensing for Marine and Coastal Environments (EPA, Miami, 2002). [Google Scholar]
- E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall‘Olmo, “Acceptance angle effects on the beam attenuation in the ocean” Opt. Exp. 17, 1535–1550 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- H. J. Van der Woerd, and R. Pasterkamp, “HYDROPT: A fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters” Remote Sens. Environ. 112, 1795–1807 (2008). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.