Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
|
|
---|---|---|
Article Number | 11017 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2011.11017 | |
Published online | 18 April 2011 |
- A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review” CR Phys. 8, 1100–1128 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er: YAG laser for medical applications” Opt. Express 12, 5125–5130 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. G. Kim, L. Shterengas, R. U. Martinelli, and G. L. Belenky, “High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers” Appl. Phys. Lett. 83, 1926–1928 (2003). [CrossRef] [Google Scholar]
- R. Kaspi, A. P. Ongstad, G. C. Dente, J. R. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement” Appl. Phys. Lett. 81, 406–408 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- S. B. Blickenstaff, A. M. Sarangan, T. R. Nelson Jr., K. D. Leedy, and D. L. Agresta, “Influence of shadow mask design and deposition methods on non-planar dielectric material deposition” J. Microlithogr., Microfab. and Microsyst. 4, 0230151–0230156 (2005). [Google Scholar]
- L. E. Myers, W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators”, J. Quant. Elect. 33, 1663–1672 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- A. Szilagyi, A. Hordvik, and H. Schlossberg, “A quasi-phase-matching technique for efficient optical mixing and frequency doubling” J. Appl. Phys. 47, 2025–2032 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C.B. Ebert, J.S. Harris, M.M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion” Appl. Phys. Lett. 79, 904–906 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- C. Lynch, D. Bliss, T. Zens, V. Tassev, P. Kuo, A. Lin, J. Harris, M. Fejer, and P. Schunemann, Mm-thick orientation-patterned GaAs for IR and THz generation (ICVGE-13, Salt Lake City, 12-17 August 2007). [Google Scholar]
- C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20–50 kHz Mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2μm holmium laser” Opt. Lett. 34, 262–264 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- W. Hurlbut, Y. Lee, K. Vodopyanov, P. Kuo, and M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the midinfrared” Opt. Lett. 32, 668–670 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- L. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picoseconds laser pulses” Phys. Rev. B 13, 3515–3522 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- M. E. Thomas, D. W. Blodgett, D. V. Hahn, and S. G. Kaplan, “Characterization and modeling of the infrared properties of GaP and GaAs” Proc. SPIE 5078, 159–168 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- I. Shoji, and T. Taira, “Transmittance spectra of GaAs and GaP in far-infrared region” Ultraviolet Synchrotron Orbital Radiation Activity Report 2001, 142–143 (2002). [Google Scholar]
- A. N. Pikhtin, and D. A. Yaskov, “Infrared absorption in gallium phosphide” Phys. Status Solidi (b) 34, 815–824 (1969). [NASA ADS] [CrossRef] [Google Scholar]
- I. Tomita, “Fabrication and characterization of a quasi-phase-matched GaP optical device for terahertz-wave generation” Opt. Mater. 32, 323–328 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- T. Matsushita, I. Ohta, and T. Kondo, “Quasi-phase-matched parametric fluorescence in a periodically inverted GaP waveguide” Appl. Phys. Exp. 2, 0611011–0611013 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- T. Matsushita, T. Yamamoto, and T. Kondo, “Epitaxial growth on spatially inverted GaP for quasi-phase-matched nonlinear optical devices” Jap. J. Appl. Phys. 17, L408–410 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- J. W. Lee, J. Salzman, D. Emerson, J. Shealy, and J. M. Ballantyne, “Selective area growth of GaP on Si by MOCVD” J. Cryst. Gr. 172, 53–57 (1997). [CrossRef] [Google Scholar]
- C. Lynch, V. Tassev, D. Bliss, and G. Bryant, Growth on orientation patterned semiconductors for nonlinear optical frequency conversion (Advances in Optical Materials, San Jose, 11 Oct. 2009). [Google Scholar]
- V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure-temperature-gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices” J. Cryst. Growth 312, 1146–1149 (2010). [CrossRef] [Google Scholar]
- C. C. Wang, and S. H. McFarlane, “Epitaxial growth and characterization of GaP on insulating substrates” J. Cryst. Growth 13/14, 262–267 (1972). [CrossRef] [Google Scholar]
- W. G. Oldham, “Vapor growth of GaP on GaAs substrates” J. Appl. Phys. 36, 2887–2890 (1965). [CrossRef] [Google Scholar]
- W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide” J. Phys. Chem. Sol. 113/4, 339–341 (1959). [CrossRef] [Google Scholar]
- D. A. Yasakov, A. N. Pikhtin, and V. I. Ulyanov, “Optical properties of gallium phosphide grown by floating zone” Mat. Res. Bull. 4, 839–848 (1969). [Google Scholar]
- N. J. Kadhim, and D. Mikherjee, “Growth defects associated with MBE deposited GaAs layers” Vacuum 55, 249–253 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- M. Weyers, and M. Sato, “Growth of GaP by MOVPE at very low pressure: kinetics and carbon incorporation” J. Cryst. Growth 115, 469–473 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- D. W. Shaw, “Kinetic aspects in the vapor phase epitaxy of III-V compounds” J. Cryst. Growth 31, 130–141 (1975). [CrossRef] [Google Scholar]
- R. Karlicek, D. Mitcham, J. Ginocchio, and B. Hammarlund, “The effect of formation on the morphology and growth rate of InP grown by hydride vapor phase epitaxy” J. Electrochem. Soc. 134, 470–474 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- E. Lafon, J. Napierala, D. Castellici, A. Pimpinelli, R. Cadoret, and B. Gerald, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies” J. Cryst. Growth 222, 482–496 (2001). [CrossRef] [Google Scholar]
- J. W. Allen, and J. W. Hodby, “Infrared absorption in GaP-GaAs Allows: Absorption in n-type materials” Proc. Phys. Soc. 82, 315–323 (1963). [NASA ADS] [CrossRef] [Google Scholar]
- J. W. Hodby, “Infrared absorption in GaP-GaAs Alloys: Absorption in p-type materials” Proc. Phys. Soc. 82, 324–326 (1963). [NASA ADS] [CrossRef] [Google Scholar]
- D. T. J. Hurle, “Charged native points defects in GaAs and other III-V compounds” J. Cryst. Growth 237, 1621–1627 (2002). [CrossRef] [Google Scholar]
- K. Gruter, M. Deschler, H. Jurgensen, R. Beccard, and P. Balk, “Deposition of high quality GaAs films at fast rates in the LP-CVD system” J. Cryst. Growth 94, 607–612 (1989). [CrossRef] [Google Scholar]
- E. Putz, E. Veuhoff, K. H. Bachem, P. Balk, and H. Luth, “Low pressure vapor phase epitaxy of GaAs in a halogen transport system” J. Electrochem. Soc. 128, 2202–2206 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “20-50 kHz “Mid-Infrared OP-GaAs OPO”, Proc. CLEO/QELS (2008). [Google Scholar]
- J. Li, D. Fenner, K. Termkoa, M. Allen, P. Moulton, C. Lynch, D. Bliss, and W. Goodhue, “Wafer-fused orientation pattern GaAs” Proc. SPIE 6875, 68750H (2008). [NASA ADS] [CrossRef] [Google Scholar]
- K. Termkoa, V. Mathur, X. Qian, W. Goodhue, D. Bliss, R. Peterson, and V. Tassev, Development of a Wafer Fusion Process for Producing Patterned GaP Templates (APS March Meeting, Pittsburgh, 16-20 March 2009). [Google Scholar]
- K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique” Opt. Mater. (submitted). [Google Scholar]
- R. Karlisek, B. Segner, J. Wynn, A. Becker, U. Chakrabarti, and R. Logan, “Regrowth of semi-insulating InP around etched mesas using hydride vapor phase epitaxy” J. Electrochem. Soc. 137, 2639–2642 (1990). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.