Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11003
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2011.11003
Published online 22 February 2011
  1. G. Collins, “The electronic refractometer” Brit. J. Physiol. Opt. 1, 30–40 (1937). [Google Scholar]
  2. C.M. Schor, L.K. Cormack, S.B. Stevenson, “Negative feedback control model of proximal convergence and accommodation” Ophthal. Physl. Opt. 12 307–318 (1992). [CrossRef] [Google Scholar]
  3. F.W. Campbell, “The accommodation response of the human eye” Brit. J. Physiol. Opt. 16, 188–203 (1960). [Google Scholar]
  4. W.D. O’Neill, C.K. Sanathanan, and J.S. Brodkey “A minimum variance, time optimal, control system mode of human lens accommodation” IEEE Transactions on Systems Science and Cybernetics 5, 290–299 (1969). [CrossRef] [Google Scholar]
  5. D. Shirachi, J. Liu, M. Lee “Accommodation dynamics. 1. Range nonlinearity” Am. J. Optom. Phys. Opt. 55, 631–641 (1978). [CrossRef] [Google Scholar]
  6. L. Stark, Neurological control systems: studies in bioengineering (Plenum Press, New York, 1968). [Google Scholar]
  7. O. Franzen, H. Richter, and L. Stark, “Accommodation and vergence mechanisms in the visual systems” in Proceedings of the First International Symposium on Accommodation/Vergence Mechanisms in the Visual System, 129–140 (Stockholm, 2000). [Google Scholar]
  8. F.W. Campbell, J.G. Robson, and G. Westheimer, “Fluctuations of accommodation under steady viewing conditions” J. Physiol-London 145, 579–594 (1959). [CrossRef] [Google Scholar]
  9. F.W. Campbell, and G. Westheimer, “Dynamics of the accommodation responses of the human eye” J. Physiol-London 151, 285–295 (1960). [CrossRef] [Google Scholar]
  10. W.N. Charman, and H. Radhakrishnan, “Accommodation, pupil diameter and myopia” Ophthal. Physl. Opt. 29, 72–79 (2009). [CrossRef] [Google Scholar]
  11. A. Arnulf, and O. Depuy, “Contribution a l’étude des microfluctuations d’accommodation de l’œil”, Rev. Opt-Paris 39, 195–208 (1960). [Google Scholar]
  12. A. Arnulf, J. Santamaría, and J. Bescós, “El sistema optico del ojo primerescalon de la sensacion visual” El optico profesional 191, 13–20 (1977). [Google Scholar]
  13. A. Arnulf, J. Santamaría, and J. Bescós, “A cinematograph method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation” J. Opt-Paris 12, 123–128 (1981). [NASA ADS] [CrossRef] [Google Scholar]
  14. P. Denieul, “Effects of stimulus vergence on mean accommodation response, microfluctuations of accommodation and optical quality of the human eye”, Vision Res. 22 561–569 (1982). [CrossRef] [Google Scholar]
  15. H. Krueger “Schwankungen der Akkommodation des menschlichen auges bei mon. und binokular Beobachtung” Albrecht v. Graefes Arch. Klin. Exp. Ophthal. 205, 129–133 (1978). [CrossRef] [Google Scholar]
  16. J.C. Kotulak, and C.M. Schor “Temporal variations in accommodation during steady-state conditions” J. Opt. Soc. Am. 3, 223–227 (1986). [NASA ADS] [CrossRef] [Google Scholar]
  17. C. Miege, and P. Denieul “Mean response and oscillations of accommodation for various stimulus vergences and feedback control of the accommodative system” Ophthal. Physl. Opt. 8, 165–171 (1988). [CrossRef] [Google Scholar]
  18. S. Usui, L. Stark “Sensory and motor mechanism interact to control amplitude of pupil noise” Vision Res. 18, 505–507 (1978). [CrossRef] [Google Scholar]
  19. L.J. Bour, “The influence of the spatial distribution of a target on the dynamic response and fluctuations of the accommodation of the human eye” Vision Res. 21, 1287–1296 (1981). [CrossRef] [Google Scholar]
  20. P. Denieul, “Dynamic study of microfluctuations of accommodation with a high sensitive infrared optometer” in Optica Hoy y Manana, Proceedings of the ICO-11 Conference, 51–54 (ICO, Madrid, 1978). [Google Scholar]
  21. P. Denieul, Etude des fluctuations d’accommodation de l’oeil par Optométrie Infra Rouge (Thesis, L’Université de Paris-Sud, 1980). [Google Scholar]
  22. P. Denieul, “Influence de la dimension des tests sur l’accommodation” L’Optométrie 28, 12–13 (1982). [Google Scholar]
  23. P. Denieul, and F. Corno, “Accommodation et contraste” L’Optométrie 32, 4–8 (1986). [Google Scholar]
  24. S. Phillips, L. Stark, “Blur: a sufficient accommodative stimulus” Doc. Ophthalmol. 43, 65–89 (1977). [CrossRef] [Google Scholar]
  25. M. Alpern, “Variability of accommodation during steady fixation at various levels of illuminance” J. Opt. Soc. Am. 48, 193–197 (1958). [NASA ADS] [CrossRef] [Google Scholar]
  26. C.M. Schor, C.A. Johnson, R.B. Post, “Adaptation of tonic accommodation” Ophthal. Physl. Opt. 4, 133–137 (1984). [CrossRef] [Google Scholar]
  27. J. Santamaría, A. Plaza, J. Bescós, “Dynamic recording of the binocular point spread function of the eye optical system” Opt. Appl. 14, 341–347 (1984). [Google Scholar]
  28. A. Mira-Agudelo, L. Lundstroem, and P. Artal, “Temporal dynamics of ocular aberrations monocular vs binocular vision” Ophthal. Physl. Opt. 29, 256–263 (2009). [CrossRef] [Google Scholar]
  29. L.R. Stark, N.C. Strang, D.A. Atchison, “Dynamic accommodation response in the presence of astigmatism” J. Opt. Soc. Am. A. 20, 2228–2236 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  30. A. Arnulf, O. Depuy, and F. Flamant, “Les microfluctuations d’accommodation de l’oeil et l’acuité visuelle pour les diamètres pupillaires naturals” C. R. Hebd seanc Acad Sci Paris 232, 349–350 (1951). [Google Scholar]
  31. T. Iwasaki, and S. Kurimoto, “Objective evaluation of eye strain using measurements of accommodative oscillation” Ergonomics 30, 581–587 (1987). [CrossRef] [Google Scholar]
  32. P.P. Monticone, and M. Menozzi, Eye stress, flickering and micro-fluctuations (GfA Spring Congress, Darmstadt, 24-26 March 2010). [Google Scholar]
  33. B. Winn, J.R. Pugh, B. Gilmartin, H. Owens, “Arterial pulse modulates steady-state ocular accommodation” Curr. Eye Res. 9, 971–975 (1990). [CrossRef] [Google Scholar]
  34. M.J. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system” Vision Res. 35, 2491–2502 (1995). [Google Scholar]
  35. D.R. Iskander, M.J. Collins, M.R. Morelande, and M. Zhu, “Analyzing the dynamic wave-front aberrations in the human eye” IEEE Transactions on Biomedical Engineering 51, 1969–1980 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  36. M. Zhu, M.J. Collins, D.R. Iskander, “Microfluctuations of wave-front aberrations of the eye” Ophthal. Physl. Opt. 24, 562–571 (2004). [CrossRef] [Google Scholar]
  37. M. Muma, D.R. Iskander, and M.J. Collins, “The Role of Cardio-pulmonary Signals in the Dynamics of the Eye’s Wave-front Aberrations” IEEE Transactions On Biomedical Engineering 57, 373–383 (2010). [CrossRef] [Google Scholar]
  38. G.L. van der Heijde, A.P.A. Beers, and M. Dubbleman, “Microfluctuations of steady state accommodation measured with ultrasonography” Ophthal. Physl. Opt. 16, 216–221 (1996). [Google Scholar]
  39. K. Toshida, F. Okuyama, T. Tokoro, “Influences of the Accommodative Stimulus and Aging on the Accommodative Microfluctuation” Optometry Vision Sci. 75, 221–226 (1998). [Google Scholar]
  40. G. Heron, A study of accommodation using an infra-red optometer (MSc Thesis, University of Manchester, 1972). [Google Scholar]
  41. K.E. Schultz, Accommodative microfluctuations, crystalline lens tension, ciliary body thickness, and refractive error in children (MSc. Thesis, Graduate School of The Ohio State University 2009). [Google Scholar]
  42. W.N. Charman, “Fluctuation in accommodation: a review” Ophthal. Physl. Opt. 9, 153–164 (1988). [CrossRef] [Google Scholar]
  43. J. Tucker, W.N. Charman, P.A. Ward, “Modulation dependence of the accommodation response to sinusoidal gratings” Vision Res. 26, 1693–1707 (1986). [CrossRef] [Google Scholar]
  44. G. Heron, and C. Schor, “The fluctuations of accommodation and ageing” Ophthal. Physl. Opt. 15, 445–449 (1995). [CrossRef] [Google Scholar]
  45. J.A. Mordi, and K.J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia” Vision Res. 44, 591–601 (2004). [CrossRef] [Google Scholar]
  46. H.A. Anderson, A. Glasser, R.E. Manny, and K.K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood” Invest. Ophth. Vis. Sci. 51, 614–622 (2010). [CrossRef] [Google Scholar]
  47. H. Hofer, P. Artal, B. Singer, J.L. Aragon, and D.R. Williams, “Dynamics of the eye’s wave aberration” J. Opt. Soc. Am. A. 18, 497–506 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  48. B. Winn, B. Gilmartin “Current perspective on microfluctuations of accommodation”, Ophthal. Physl. Opt. 12 252–256 (1992). [Google Scholar]
  49. A.S. Eadie, J.R. Pugh, and B. Winn, “The use of coherence functions in the study of ocular mechanisms” Ophthal. Physl. Opt. 15, 311–317 (1995). [CrossRef] [Google Scholar]
  50. K.M. Hampson, I. Munro, C. Paterson, and C. Dainty, “Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system” J. Opt. Soc. Am. A. 22, 1241–1250 (2005). [CrossRef] [Google Scholar]
  51. J.C. He, S. Marcos, R.H. Webb, and S.A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure” J. Opt. Soc. Am. A. 15, 2449–2456 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  52. H.C. Howland, “The history and methods of ophthalmic wave-front sensing” J. Refract. Surg. 16, 552–553 (2000). [CrossRef] [Google Scholar]
  53. R.I. Calver, M.J. Cox, and D.B. Elliot, “Effect of aging on the monochromatic aberrations of the human eye” J. Opt. Soc. Am. A. 16, 2069–2078 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  54. S.A. Burns, “The spatially resolved refractometer” J. Refract. Surg. 16, 566–569 (2000). [CrossRef] [Google Scholar]
  55. M. Lombardo, and G. Lombardo, “New methods and techniques for sensing the wave aberrations of human eyes” Clin. Exp. Optom. 92, 176–186 (2009). [CrossRef] [Google Scholar]
  56. ISO 24157:2008 “Ophthalmic optics and instruments: Reporting aberrations of the human eye”, International Standards Organization (2008). [Google Scholar]
  57. D.A. Atchison, “Recent advances in measurement of monochromatic xaberrations of human eyes” Clin. Exp. Optom. 88, 5–27 (2005). [CrossRef] [Google Scholar]
  58. L.N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes” J. Opt. Soc. Am. A. 19, 2329–2348 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  59. R. Platt, and R. Shack, “History and principles of Shack-Hartmann wave-front sensing” J. Refract. Surg. 17, 573–577 (2001). [CrossRef] [Google Scholar]
  60. R. Navarro, and M.A. Losada, “Aberrations and relatively efficiency of light pencils in the living human eye” Optom. Vis. Sci. 74, 540–547 (1997). [Google Scholar]
  61. R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing” Opt. Lett. 24, 1–3 (1999). [Google Scholar]
  62. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics” Appl. Optics. 27, 1223–1225 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  63. F. Diaz-Douton, J. Pujol, M. Arjona, and S.O. Luque, “Curvature sensor for ocular wave-front measurement” Opt. Lett. 31, 2245–2247 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  64. R. Ragazzoni, J. Farinato, “Sensitivity of a pyramidic wave front sensor in closed loop adaptive optics” Astron. Astrophys. 350, L23–L26 (1999). [NASA ADS] [Google Scholar]
  65. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, “Extended source pyramid wave-front sensor for the human eye” Opt. Express. 10, 419–428 (2002). [CrossRef] [Google Scholar]
  66. S.R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wave-front sensor” Opt. Express. 2, 518–526 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  67. T. Shirai, T.H. Barnes, T.G. Haskell, “Adaptive wave-front correction by means of alloptical feedback interferometry” Opt. Lett. 25, 773–775 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  68. T. Shirai, “Liquid-crystal adaptive optics based on feedback interferometry for highresolution retinal imaging” Appl. Optics 41, 4013–4023 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  69. T. Shirai, T.H. Barnes, “Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device” J. Opt. Soc. Am. A. 19, 369–377 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  70. H.H. Lee, J.H. You, and S.H. Park, “Pak Phase-shifting lateral shearing interferometer with two pairs of wedge plates” Opt. Lett. 28, 2243–2245 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  71. S. Velghe, J. Primot, N. Guerineau, M. Cohen, B. Wattelier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers” Opt. Lett. 30, 245–247 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  72. C. Siegel, F. Loewenthal, J.E. Balmer, “A wave-front sensor based on the fractional Talbot effect” Opt. Commun. 194, 265–275 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  73. R. Sekine, T. Shibuya, K. Ukai, S. Komatsu, M. Hattori, T. Mihashi, N. Nakazawa et al., “Measurement of wave-front aberration of human eye using Talbot image of twodimensional grating” Opt. Rev. 13, 207–211 (2006). [CrossRef] [Google Scholar]
  74. L. Warden, Y. Liu, P.S. Binder, A.W. Dreher, L. Sverdrup “Performance of a new binocular wave-front aberrometer based on a selfimaging diffractive sensor” J. Refract. Surg. 24, 188–196 (2008). [CrossRef] [Google Scholar]
  75. L.S. Horwitz, “System and method for wave-front measurement” US Patent 6,781,681 (2004). [Google Scholar]
  76. L.S. Horwitz, “Ocular biometer” US Patent 5,963,300 (1999). [Google Scholar]
  77. P.P. Monticone, and M. Menozzi, “Instrument for high-speed recording of accommodation of the human eye” Biomed. Tech. 55, 83–88 (2010). [CrossRef] [Google Scholar]
  78. P.P. Monticone, M. Menozzi, and S. Martin, High speed and high accuracy accommodation tracker (GfA Spring Congress, Darmstadt, 24-26 March 2010). [Google Scholar]
  79. P.B. Kruger, “Infrared recording retinoscope for monitoring accommodation” Am. Optom. Phys. Opt. 56, 116–123 (1979). [CrossRef] [Google Scholar]
  80. H. Krueger, “An apparatus for continuous, objective measurement of refraction of the human eye” Opt. Acta 20, 277–285 (1973). [CrossRef] [Google Scholar]
  81. R. Suryakumar, J.P. Meyers, E.L. Irving, W.R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence” Vision Res. 47, 260–268 (2007). [CrossRef] [Google Scholar]
  82. J.W. Kohl, “Ultrasonography in ophthalmology” Western J. Med. 120, 234–234 (1974). [Google Scholar]
  83. F.R. de Vries, G.L. van der Heijde, H.G. Goovaerts, “System for continuous high-resolution measurement of distances in the eye” J. Biomed. Eng. 9, 32–37 (1987). [CrossRef] [Google Scholar]
  84. A.P.A. Beers, and G.L. van der Heijde, “In vivo Determination of the Biomechanical Properties of the Component Elements of the Accommodation Mechanism” Vision Res. 34, 2897–2905 (1994). [Google Scholar]
  85. A.P.A. Beers, and G.L. van der Heijde, “Analysis of accommodation function with ultrasonography” Doc. Ophthalmol. 92, 1–I0 (1996). [CrossRef] [Google Scholar]
  86. D.R. Iskander, M.R. Morelande, and M.J. Collins, “Estimating the dynamics of aberration components in the human eye” in Proceedings of the 11th IEEE Workshop Statistical Signal Processing (SSP 2001), 241–244 (IEEE, Singapore, 2001). [Google Scholar]
  87. T.R. Candi, and S.R. Bharadwaj, “The stability of steady state accommodation in human infants” J. Vision 4, 1–16 (2007). [Google Scholar]
  88. L.S. Gray, B. Gilmartin, and B. Winn, “Accommodation microfluctuations and pupil size during sustained viewing of visual display terminals” Ophthal. Physl. Opt. 20, 5–10 (2000). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.