Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11001
Number of page(s) 16
DOI https://doi.org/10.1051/jeos.2011.11001
Published online 22 February 2011
  1. RM. Wood, Laser-induced damage of optical materials (Institute of Physics publishing series in optics and optoelectronics, Bristol and Philadelphia, 2003). [Google Scholar]
  2. R.A. House, J.R. Bettis, and A.H. Guenther, “Subsurface structure and laser damage threshold” IEEE J. Quant. Electr. QE-13, 363–365 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  3. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics” Appl. Opt. 12, 661–664 (1973). [CrossRef] [Google Scholar]
  4. J.H. Campbell, “Damage resistant optical glasses for high power lasers: A continuing glass science and technology challenge” UCRL-JC-149843 (2002). [Google Scholar]
  5. T. Kasai, “Machining and processing technologies and quality of silicon wafer surfaces” J. Surf. Sci. Soc. Jpn. 21, 688–695 (2000) in Japanese. [CrossRef] [Google Scholar]
  6. P.P. Hed, D.F. Edwards, and J.B. Davis, “Subsurface damage in optical materials: Origin, measurement & removal” UCRL-99548 (1988). [Google Scholar]
  7. J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. P. Champreux, J. L. Charles, P. Cormont et al., “Optimizing fused silica polishing processes for 351 nm high power laser application” in Proc. SPIE 7132, 71321I (2008). [NASA ADS] [CrossRef] [Google Scholar]
  8. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques” Opt. Express 17, 20448–20456 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  9. D. Golini, and S.D. Jacobs, “Physics of loose abrasive microgrinding” Appl. Opt. 30, 2761–2777 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  10. P.P. Hed, and D.F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage” Appl. Opt. 26, 4677–4680 (1987). [CrossRef] [Google Scholar]
  11. W.J. Rupp, “Mechanism of the Diamond Lapping Process” Appl. Opt. 13, 1264–1269 (1974). [NASA ADS] [CrossRef] [Google Scholar]
  12. J. C. Lambropoulos, S. D. Jacobs, B. Gillman, F. Yang, and J. Ruckman, “Subsurface damage in microgrinding optical glasses” LLE Review 73, 45–49 (1997). [Google Scholar]
  13. J. Schoen, “A tutorial on deterministic microgrinding” Convergence 7 (1999). [Google Scholar]
  14. S.D. Jacobs, S.R. Arrasmith, I.A. Kozhinova, L.L. Gregg, A.B. Shorey, H.J. Romanofsky, D. Golini et al., “MRF: Computer-Controlled Optics Manufacturing” Am. Ceram. Soc. Bulletin 78, 42–48 (1999). [Google Scholar]
  15. S.D. Jacobs, W. Kordonski, I.V. Prokhorov, D. Golini, G.R. Gorodkin, and T.D. Strafford, “Deterministic magnetorheological finishing” US Patent 5795212 (1998). [Google Scholar]
  16. H. Pollicove, and D. Golini, “Deterministic manufacturing processes for precision optical surfaces” Key Eng. Mat. 238-239, 53–58 (2003). [CrossRef] [Google Scholar]
  17. Y. Verma, A.K. Chang, J.W. Berrett, K. Futtere, G.J. Gardopee, J. Kelley, T. Kyler et al., “Rapid damage-free shaping of silicon carbide using Reactive Atom Plasma (RAP) processing” Proc. SPIE 6273, 62730B (2006). [NASA ADS] [CrossRef] [Google Scholar]
  18. Y. Mori, K. Yamauchi, K. Endo, T. Ide, H. Toyota, K. Nishizawa, and M. Hasegawa, “Evaluation of elastic emission machined surfaces by scanning tunneling microscopy” J. Vac. Sci. Technol. A 8, 621–624 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  19. Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining” Precision Eng. 9, 123–128 (1987). [CrossRef] [Google Scholar]
  20. Y. Mori, K. Yamauchi, and K. Endo, “Mechanism of atomic removal in elastic emission machining” Precision Eng. 10, 24–28 (1988). [CrossRef] [Google Scholar]
  21. P.E. Miller, T.I. Suratwala, L.L. Wong, M.D. Feit, J.A. Menapace, P.J. Davis, and R.A. Steele, “The distribution of subsurface damage in fused silica” Proc. SPIE 5991, 599101 (2005). [CrossRef] [Google Scholar]
  22. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis et al., “Sub-surface mechanical damage distributions during grinding of fused silica” J. Non-Crystal. Solids 352, 5601–5617 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  23. J.A. Menapace, P.J. Davis, W.A. Steele, L.L. Wong, T.I. Suratwala, and P.E. Miller, “MRF applications: Measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique” Proc. SPIE 5991, 599103 (2005). [Google Scholar]
  24. Z. Wang, Y. Wu, Y. Dai, and S. Li, “Subsurface damage distribution in the lapping process” Appl. Opt. 47, 1417–1426 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  25. X. Tonnellier, P. Morantz, P. Shore, A. Baldwin, R. Evans, and D.D. Walker, “Subsurface damage in precision ground ULE® and Zerodur® surfaces” Opt. Express 15, 12197–12205 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  26. T. Suratwala, R. Steele, M.D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rouge particles on the sub-surface damage of fused silica during grinding/polishing” J. Non-Crystal. Solids 354, 2023–2037 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  27. W. Zhang, and J. Zhu, “Controlling subsurface damage in neo-dymium-doped phosphate glass” Optik 120, 752–757 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  28. J. Shen, S. Liu, K. Yi, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates” Optik 116, 288–294 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  29. D.A. Lucca, E. Brinksmeierm and G. Goch, “Progress in assessing surface and subsurface integrity” Ann. CIRP 47, 669–693 (1998). [CrossRef] [Google Scholar]
  30. R.E. Green Jr., “Nondestructive Evaluation of Materials” Annu. Rev. Mater. Sci. 20, 197–217 (1990). [CrossRef] [Google Scholar]
  31. E. Brinksmeier, “State-of-the-art of non-destructive measurement of sub-surface material properties and damages” Prec. Eng. 11, 211–224 (1989). [CrossRef] [Google Scholar]
  32. C.J. Hellier, Handbook of nondestructive evaluation (The McGraw-Hill Companies Inc., New York, 2003). [Google Scholar]
  33. B.R. Lawn and D.B. Marshall, “Hardness, toughness, and brittleness: An indentation Analysis” J. Amer. Ceram. Soc. 62, 347–350 (1979). [CrossRef] [Google Scholar]
  34. M. Buijs and K. K. Hounten, “A model for lapping of glass” J. Mater. Sci. 28, 3014–3020 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  35. Y. Ahn, N. Cho, S. Lee and D. Lee, “Lateral crack in abrasive wear of brittle materials” JSME Int. J. Series A 46, 140–144 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  36. Y. P. Chang, M. Hashimura, and D. A. Dornfeld, “An investigation of material removal mechanisms in lapping with grain size transition” J. Manuf. Sci. Eng. 122, 413–419 (2000). [CrossRef] [Google Scholar]
  37. J.C. Lambropoulos, S.D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing” Ceram. Trans. 102, 113–128 (1999). [Google Scholar]
  38. C.J. Evans, E. Paul, D. Dornfeld, D.A. Lucca, G. Byrne, M. Tricard, F. Klocke et al., “Material Removal Mechanisms in Lapping and Polishing” Ann. CIRP 152, 611–633 (2003). [CrossRef] [Google Scholar]
  39. M. J. Cumbo, “Chemo-mechanical Interactions in Optical Polishing,” Ph.D. Dissertation, University of Rochester, Rochester, NY, 1993. [Google Scholar]
  40. T. Izumitani, and S. Harada, “Polishing mechanism of optical glasses” Glass Technol. 12, 131–135 (1971). [Google Scholar]
  41. L.M. Cook, “Chemical process in glass polishing” J. Non-Crystal. Solids 120, 152–171 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  42. Y. Li, J. Hou, Q. Xu, J. Wang, W. Yang and Y. Guo, “The characteristics of optics polished with a polyurethane pad” Opt. Express 16, 10285–10293 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  43. R.R. Berggren and R.A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252–257 (1997); John C. Lambropolous personal communication (New York, 2008). [NASA ADS] [CrossRef] [Google Scholar]
  44. D.W. Camp, M. Kozlowskim, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces” Proc. SPIE 3244, 356–364 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  45. J.W. Carr, E. Fearon, L.J. Summers, I.D. Hutcheon, J.K. Haack, and S. Hoskins, “Subsurface structure in polished fused silica and diamond turned single crystal silicon” UCRL-JC-134512 (1999). [Google Scholar]
  46. L. Rayleigh, “Polish” Nature 64, 385–388 (1901) [Trans. Opt. Soc. 19, 38–47 (1917)]. [CrossRef] [Google Scholar]
  47. F.W. Preston, “The structure of abraded glass surfaces” Tran. Opt. Soc. 23, 141–164 (1922). [NASA ADS] [CrossRef] [Google Scholar]
  48. J. Mackerle, “Finite-element modeling of non-destructive material evaluation, an addendum: a bibliography (1997-2003)” Modelling Simul. Mater. Sci. Eng. 12, 799–834 (2004). [CrossRef] [Google Scholar]
  49. T. O. Mulhearn, “The deformation of metals by Vickers-type pyramidal indenters” J. Mech. Phys. Solids 7, 85–96 (1959). [NASA ADS] [CrossRef] [Google Scholar]
  50. S. Van der Zwaag, J.T. Hagan, and J.E. Field, “Studies of contact damage in polycrystalline zinc sulphide” J. Mater. Sci. 15, 2965–2972 (1980). [CrossRef] [Google Scholar]
  51. D.S. Anderson and M.E. Frogner, “A method for the evaluation of subsurface damage” in Technical Digest of the Optical Fabrication and Testing Workshop (Optical Society of America, Washington DC, 1985). [Google Scholar]
  52. F. Guiberteau, N.P. Padture and B.R. Lawn, “Effect of grain size on Hertzian contact damage in alumina” J. Am. Ceram. Soc. 77, 1825–1831 (1994). [CrossRef] [Google Scholar]
  53. H.H.K. Xu and S. Jahanmir, “Simple technique for observing sub-surface damage in machining of ceramics” J. Am. Ceramic Soc. 77, 1388–1390 (1994). [CrossRef] [Google Scholar]
  54. H. Helbawi, L. Zhang, and I. Zarudi, “Difference in subsurface damage in indented specimens with and without bonding layer” Int. J. Mech. Sci. 43, 1107–1121 (2001). [CrossRef] [Google Scholar]
  55. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses” J. Am. Ceram. Soc. 77, 3277–3280 (1994). [CrossRef] [Google Scholar]
  56. J.A. Randi, J.C. Lambropoulos, and S.D. Jacobs, “Subsurface damage in some single crystalline optical materials” Appl. Opt. 44, 2241–2249 (2005). [CrossRef] [Google Scholar]
  57. S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes” J. Mater. Process. Technol. 205, 34–41 (2008). [CrossRef] [Google Scholar]
  58. S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of ground optical materials,” J. Cent. South Univ. Technol. 14, 546–551 (2007). [CrossRef] [Google Scholar]
  59. T. Ohta, J. Yan, T. Kuriyagawa, S. Kodera, and T. Nakasuji, “Prediction of subsurface damage depth of ground brittle materials by surface profiling” Int. J. Machining and Machinability of Mater. 2, 108–124 (2007). [Google Scholar]
  60. F. S. Jones, “Latent milling marks on glass,” J. Amer. Ceram. Soc. 29, 108–114 (1946). [CrossRef] [Google Scholar]
  61. P. W. Kendall, “Etching polished depressions in glass plates” J. Sci. Instrum. 41, 485 (1964). [NASA ADS] [CrossRef] [Google Scholar]
  62. M. Yoshikawa, B. Zhang, and H. Tokura, “Observations of ceramics surface cracks by newly proposed methods” J. Ceram. Soc. Jpn. 95, 961–969 (1987) in Japanese. [Google Scholar]
  63. C. Miao, S.N. Shafrir, J.C. Lambropoulos, J. Mici, and S.D. Jacobs, “Shear stress in magnetorheological finishing for glasses” Appl. Opt. 48, 2585–2594 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  64. A.B. Shorey, S.D. Jacobs, W.I. Kordonski, and R.F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing” Appl. Opt. 40, 20–33 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  65. A. B. Shorey, Mechanisms of material removal in magnetorheological finishing (MRF) of glass (Ph.D. Dissertation, University of Rochester, Rochester, NY, 2000). [Google Scholar]
  66. C. Miao, J.C. Lambropoulos, and S.D. Jacobs, “Process parameter effects on material removal in magnetorheological finishing of borosilicate glass” Appl. Opt. 49, 1951–1963 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  67. W.E. Kline and H.S. Fogler, “Dissolution kinetics: catalysis by strong acids” J. Colloid Interface Sci. 82, 93–102 (1981). [NASA ADS] [CrossRef] [Google Scholar]
  68. Q. Zhao, J. Chen, J. Yao, and S. Zhou, “Investigation of surface and subsurface damage in diamond grinding of optical glass using hybrid copper-resin-bonded diamond wheel” J. Vac. Sci. Technol. B 27, 1489–1495 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  69. Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang et al., “A method for evaluating subsurface damage in optical glass,” Opt. Express 18, 17180–17186 (2010). [CrossRef] [Google Scholar]
  70. L. Wong, T. Suratwala, M.D. Feit, P.E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica” J. Non-Crystal. Solids 355, 797–810 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  71. M. Affatigato, D.H. Osborne, and R.F. Haglund Jr., “Effect of Surface Roughness on the Acid Etching of Amorphous Silica” J. Am. Ceram. Soc. 79, 688–694 (1996). [CrossRef] [Google Scholar]
  72. J.W. Carr, E. Fearon, L.J. Summers, and I.D. Hutcheon, “Subsurface damage assessment with atomic force microscopy” UCRL-JC-132385 (1999). [Google Scholar]
  73. T. R. Thomas, Rough surfaces (Second Ed., Imperial College Press, London, 1999). [Google Scholar]
  74. C.Y. Poon, and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM, and non-contact optical profiler” Wear 190, 76–88 (1995). [CrossRef] [Google Scholar]
  75. V. Radhakrishnan, “Effect of stylus radius on the roughness values measured with tracing stylus instruments” Wear 16, 325–335 (1970). [CrossRef] [Google Scholar]
  76. G.A.C.M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions” J. Mater. Sci. 28, 6261–6273 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  77. T. Liew, S.W. Wu, S.K. Chow, and C.T. Lim, “Surface and subsurface damages and magnetic recording pattern degradation induced by indentation and scratching” Tribol. Int. 33, 611–621 (2000). [Google Scholar]
  78. B.J. Inkson, M. Mulvihill, and G. Mobus, “3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography” Scripta Mater. 45, 753–758 (2001). [CrossRef] [Google Scholar]
  79. B.J. Inkson, D. Leclere, F. El Fallagh, and B. Derby, “The effect of focused ion beam machining on residual stress and crack morphologies in Alumina” Phys. Conf. Ser. 26, 219–222 (2006). [Google Scholar]
  80. B.J. Inkson, H.Z. Wu, T.J. Steer, and G. Möbus, “3D mapping of subsurface cracks in alumina using FIB: Fundamentals of nanoindentation and nanotribology” Mater. Res. Soc. Proc. 649, Q7.7.1–Q7.7.6 (2001). [Google Scholar]
  81. H.Z. Wu, S.G. Roberts, G. Möbus, and B.J. Inkson, “Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina/5 vol.%SiC nanocomposites” Acta Mater. 51, 149–163 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  82. B.J. Inkson, T. Steer, G. Möbus, and T. Wagner, “Subsurface nanoindentation deformation of Cu–Al multilayers mapped in 3D by focused ion beam microscopy” J. Microscopy 201, 256–269 (2001). [CrossRef] [Google Scholar]
  83. T.J. Steer, G. Möbus, T. Wagner, O. Kraft, and B.J. Inkson, “3D FIB mapping of nanoindentation zones in a Cu–Ti multilayered coating” Thin Solid Films 413, 147–154 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  84. S. Bhattacharya, A.R. Riahi, and A.T. Alpas, “Indentation-induced subsurface damage in silicon particles of Al-Si alloys” Mater. Sci. Eng. A 527, 387–396 (2009). [CrossRef] [Google Scholar]
  85. E.A. Stach, V.R. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “FIBTEM characterization of surface and subsurface defects introduced into lithium niobate by a femtosecond laser” Microsc. Microanal. 9, 876–877 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  86. T.J. Steer, G. Mobus, O. Kraft, T. Wagner, and B.J. Inkson, “3D FIB and AFM mapping of nanoindentation zones” Mat. Res. Soc. Symp. Proc. 649, Q3.7.1–Q3.7.6 (2001). [Google Scholar]
  87. M. Sugiyama and G. Sigesato, “A review of focused ion beam technology and its applications in transmission electron microscopy” J. Electron. Microsc. 53, 527–536 (2004). [CrossRef] [Google Scholar]
  88. F. Elfallagh and B.J. Inkson, “3D analysis of crack morphologies in silicate glass using FIB tomography” J. Euro. Ceram. Soc. 29, 47–52 (2009). [CrossRef] [Google Scholar]
  89. J.R. Kremer, D.N. Mastronarde, and J.R. McIntosh, “Computer visualization of threedimensional image data using IMOD” J. Struct. Biol. 116, 71–76 (1996). [CrossRef] [Google Scholar]
  90. J.A. Menapace, P.J. Davis, W.A. Steele, L.L. Wong, T.I. Suratwala, and P.E. Miller, “Utilization of magnetorheological finishing as a diagnostic tool for investigating the three-dimensional structure of fractures in fused silica” Proc. SPIE 5991, 599102 (2005). [CrossRef] [Google Scholar]
  91. K. Saruki and A. Yamada, “Observation of grinding damage and bending strength of ceramics” J. Soc. Mat. Sci. Jpn. 44, 927–932 (1995) in Japanese. [CrossRef] [Google Scholar]
  92. W. Kanematsu, “Visualization of subsurface damage in silicon nitride from grinding by a plasma etching and dye impregnation method” J. Am. Ceram. Soc. 89, 2564–2570 (2006). [CrossRef] [Google Scholar]
  93. W. Kanematsu, M. Sando, L.K. Ives, R. Marinenko, and G.D. Quinn, “Dye impregnation method for revealing machining crack geometry” J. Am. Ceram. Soc. 84, 795–800 (2001). [CrossRef] [Google Scholar]
  94. N. Lapinski, and A. Sather, “Process for the Detection of Micro-Cracks” US Patent 4172224 (1979). [Google Scholar]
  95. T. Homma, C.E.D. Chidsey, and M. Watanabe, “Method of detecting microscopic defects existing on a silicon wafer” US Patent 6174727 (2001). [Google Scholar]
  96. S.R. Choi and J.A. Salem, “Preloading technique in dynamic fatigue testing of glass and ceramics with an indentation flaw system” J. Am. Ceram. Soc. 79, 1228–1232 (1996). [CrossRef] [Google Scholar]
  97. N.N. Kachalov, Technology of grinding and polishing sheet glass (Acad. Sci., Moscow-Leningrad, 1958) in Russian. [translated by W. Mao and Y. Yang, 141–142 (China Industry Press, Peking, 1965) in Chinese).] [Google Scholar]
  98. N.J. Brown, B.A. Fuchs, P.P. Hed and I.F. Stowers, “The response of isotropic brittle materialsto abrasive processes” in Proceedings of 43rd Annual Symposium on Frequency Control, 611–616 (IEEE, Denver, Colorado, 1989). [Google Scholar]
  99. J.C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grindinginduced subsurface damage” Proc. SPIE 3728, 41–50 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  100. P.P. Hed and D.F. Edwards, “Relationship between subsurface damage depth and surface roughness during grinding of optical glass with diamond tools” Appl. Opt. 26, 2491 (1987). [NASA ADS] [CrossRef] [Google Scholar]
  101. J.C. Lambropoulos, S.D. Jacobs, and J. Ruckman, “Micromechanics of material removal mechanisms from brittle surfaces: Subsurface damage and surface microroughness” LLE Review 74, 131–138 (1998). [Google Scholar]
  102. W. Zhang and J. Zhu, “Determination of Subsurface damage in Nd-doped phosphate glasses” Proc. SPIE 6723, 672311 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  103. J. Neauport, J. Destribats, C. Manier, C. ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping” Appl. Opt. 49, 5736–5745 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  104. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman, “Roughness parameters” J. Mater. Process. Technol. 123, 133–145 (2002). [CrossRef] [Google Scholar]
  105. S.D. Jacobs, “Manipulating mechanics and chemistry in precision optics finishing” Sci. Technol. Adv. Mater. 8, 153–157 (2007). [CrossRef] [Google Scholar]
  106. K.R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real-time direct measurement of subsurface damage” Proc. SPIE 5799, 105–110 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  107. R. Sabia, H.J. Stevens, and J.R. Varner, “Pitting of a glass-ceramic during polishing with cerium oxide” J. Non-Crystal. Solids 249, 123–130 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  108. B. Ma, Z. Shen, P. He, Y. Ji, T. Sang, H. Liu, D. Liu, and Z. Wang, “Detection of subsurface defects of fused silica optics by confocal scattering microscopy” Chin. Opt. Lett. 8, 296–299 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  109. J.C. Lambropoulos, “From abrasive size to subsurface damage in grinding” Convergence 8, 1–3 (2000). [Google Scholar]
  110. Y. Li, N. Zheng, H. Li, J. Hou, X. Lei, X. Chen, Z. Yuan et al. “Morphology and distribution of subsurface damage in optical fused silica parts: Bound-abrasive grinding” Appl. Surf. Sci. 257, 2066–2073 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  111. J. Wang, Q. Xu, L. Yang, X. Chen, and Y. Li, “Characterizing subsurface damage in fused silica glass: Loose abrasive grinding” J. Opt. Soc. Korea (in press). [Google Scholar]
  112. T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics” Opt. & Photo. News 20(9), 12–15 (2008). [Google Scholar]
  113. Z.L. Wu, M.D. Feit, M.R. Kozlowski, A.M. Rubenchik, and L. Sheehan, “Laser modulated scattering as a nondestructive evaluation tool for optical surfaces and thin film coatings” Proc. SPIE 3578, 721–729 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  114. Z.L. Wu, L. Sheehan, and M.R. Kozlowski, “Laser modulated scattering as a non-destructive evaluation tool for defect inspection in optical materials for high power laser applications” Opt. Express 3, 376–383 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  115. W.A. Ellingson, D.M. Ayaz, M.P. Brada, and W. O’Connell, “Detection of subsurface defects in machined silicon nitride ceramics by optical scattering methods” Natl. Inst. Stand. Technol. Spec. Publ. 847, 147–157 (1993). [Google Scholar]
  116. W.A. Ellingson and M.P. Brada, “Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics” US Patent 5426506 (1995). [Google Scholar]
  117. J.S. Steckenrider, Automated laser scatter detection of surface and subsurface defects in Si3N4 components (ANL/ET/CP-85328, 1995). [Google Scholar]
  118. J.A. Ellingson, J.A. Todd, and J. Sun, “Optical method and apparatus for detection of defects and microstructural changes in ceramics and ceramic coatings” US Patent 6285449 (2001). [Google Scholar]
  119. W. Lu, Z.J. Pei, and J.G. Sun, “Non-destructive evaluation methods for subsurface damage in silicon wafers: a literature review” Int. J. Machining and Machinability of Materials 2, 125–142 (2007). [Google Scholar]
  120. W.K. Lu, J.G. Sun, and Z.J. Pei, “Subsurface damage measurement in silicon wafers with cross-polarisation confocal microscopy” Int. J. Nanomanufacturing 1, 272–282 (2006). [CrossRef] [Google Scholar]
  121. J. Sun, “Device and nondestructive method to determine subsurface micro-structure in dense materials” US Patent 7042556 (2006). [Google Scholar]
  122. http://www.olympusconfocal.com/theory/confocalintro.html [Google Scholar]
  123. B. Tata and B. Raj, “Confocal laser scanning microscopy: Applications in material science and technology” Bull. Mater. Sci. 21, 263–278 (1998). [CrossRef] [Google Scholar]
  124. B.R. Whittle and R.J. Hand, “Morphology of Vickers indent flaws in soda-lime-silica glass” J. Am. Ceram. Soc. 84, 2361–2365 (2001). [CrossRef] [Google Scholar]
  125. F.H. Koklu, A.N. Vamivaksa, J.I. Quesnel, S.B. Ippolito, B.B. Goldberg, and M.S. Unlu, “Subsurface imaging of integrated circuits with widefield and confocal microscopy using numerical aperture increasing lens” in Proceedings of the 20th Annual Meeting of the IEEE, 535–536 (IEEE Laser and Electro-Optics Society, Lake Buena Vista, Florida, 2007). [Google Scholar]
  126. S.B. Ippolito, B.B. Goldberg, and M.S. Unlu, “High spatial resolution subsurface microscopy” Appl. Phys. Lett. 78, 4071–4073 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  127. F.H. Koklu, S.B. Ippolito, B.B. Goldberg, and M.S. Unlu, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control” Opt. Lett. 34, 1261–1263 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  128. E. Ramsay, K.A. Serrelsm M.J. Thomson, A.J. Waddie, M.R. Taghizadeh, R.J. Warburton, and D.T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits” Appl. Phys. Lett. 90, 131101 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  129. S.B. Ippolito, S.A. Thorne, M.G. Eraslan, B.B. Goldberg, M.S. Unlu, and Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy” Appl. Phys. Lett. 84, 4529–4531 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  130. F.H. Koklu, Y. Meydbray, E.R. Behfinger, J.I. Quesnel, D. Karabacak, S.B. Ippolito, B.B. Goldberg, and M.S. Unlu, “Subsurface imaging with widefield and confocal numerical aperture increasing lens microscopes” in Proceedings of the 19th Annual Meeting of the IEEE, 695–696 (IEEE Laser and Electro-Optics Society, Singapore, 2006. [Google Scholar]
  131. S.B. Ippolito, B.B. Goldberg, and M.S. Unlu, “Theoretical analysis of numerical aperture increasing lens microscopy” J. Appl. Phys. 97, 053105 (2005). [CrossRef] [Google Scholar]
  132. F.H. Koklu, J.I. Quesnel, A.N. Vamivakas, S.B. Ippolito, B.B. Goldberg, and M.S. Unlu, “Widefield subsurface microscopy of integrated circuits” Opt. Express 16, 9501–9506 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  133. E. Ramsay, K.A. Serrels, M.J. Thomson, A.J. Waddie, R.J. Warburton, M.R. Taghizadeh, and D.T. Reid, “Three-dimensional nanometric sub-surface imaging of a silicon flip-chip using the two-photon optical beam induced current method” Microelectron. Reliab. 47, 1534–1538 (2007). [CrossRef] [Google Scholar]
  134. A. J. Winn, A.R. Boccaccini, N. Imam, and P.A. Trusty, “Examination of microhardness indentation-induced subsurface damage in alumina platelet reinforced borosilicate glass using confocal scanning laser microscopy” J. Microscopy 186, 35–40 (1997). [CrossRef] [Google Scholar]
  135. J. Winn and J. A. Yeomans, “A study of microhardness indentation fracture in alumina using confocal scanning laser microscopy” Philos. Mag. A 74, 1253–1263 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  136. J. Neauport, P. Cormont, P. Legros, C. Amdard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy” Opt. Express 17, 3543–3554 (2009). [CrossRef] [Google Scholar]
  137. M. Derndarsky and G. Ocklind, “Some preliminary observations on subsurface damage on experimental and archaeological quartz tools using CLSM and dye” J. Archaeol. Sci. 28, 1149–1158 (2001). [CrossRef] [Google Scholar]
  138. K.R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real-time direct measurement of subsurface damage” Proc. SPIE 5799, 105–110 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  139. T. S. Gip, R. Garbe, and Q. Nguyen, “Nondestructive evaluation of subsurface damage in optical elements” US Patent 7330250 (2008). [Google Scholar]
  140. Z. Shen, B. Ma, Z. Wang, Y. Ji, T. Liu, and H. Liu, “Fabrication of supersmooth surfaces with low subsurface damage” Proc. SPIE 6722, 67223W (2007). [NASA ADS] [CrossRef] [Google Scholar]
  141. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. Rullier, “Initiation of laser-induced damage sites in fused silica optical components” Opt. Express 17, 11469–11479 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  142. P.A. Temple, “Total internal reflection microscopy: a surface inspection technique” Appl. Opt. 20, 2656–2664 (1981). [NASA ADS] [CrossRef] [Google Scholar]
  143. P.A. Temple, “Examination of laser damage sites of transparent surfaces and films using total internal reflection microscopy” Natl. Bur. Std. Spec. Publ. 568, 333–341 (1980). [Google Scholar]
  144. S.N. Jabr, “Total internal reflection microscopy: inspection of surfaces of high bulk scatter materials” Appl. Opt. 24, 1689–1692 (1985). [CrossRef] [Google Scholar]
  145. F. Draheim, B. Harnisch, and T. Weigel, “Sub surface damage of optical components and the influence on scattering properties” Proc. SPIE 2210, 709–720 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  146. C. F. Kranenberg and K. C. Jungling, “Subsurface damage identification in optically transparent materials using a nondestructive method” Appl. Opt. 33, 4248–4253 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  147. Z.M. Liao, S.J. Cohen, and J.R. Taylor, “Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool” Proc. SPIE 2428, 43–53 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  148. L.M. Sheehan, M. Kozlowski, and D.W. Camp, “Application of total internal reflection microscopy for laser damage studies on fused silica” Proc. SPIE 3244, 282–295 (1998). [CrossRef] [Google Scholar]
  149. M. Yan, L. Wang, W. Sikhaus, M. Kozlowski, J. Yang, and U. Mohideen, “Defect study in fused silica using near field scanning optical microscopy” Proc. SPIE 3244, 268–271 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  150. R. van der Bijl, O.W. Fahnle, and H. van Brug, “Subsurface damage measurements as a tool for process monitoring” in Proceedings of the ASPE Annual Meeting, 606–609 (American Society for Precision Engineering, Raleigh, NC, 1999). [Google Scholar]
  151. R.M. van der Bijl, O.W. Fahnle, H. van Brug, and J.J.M. Braat, “In-process monitoring of grinding and polishing of optical surfaces” Appl. Opt. 39, 3300–3303 (2000). [CrossRef] [Google Scholar]
  152. M. Meeder, T. Mauret, S. Booij, J. Braat, and O. Fahnle, “Optimisation of polishing processes by using iTIRM for in-situ monitoring of surface quality” Proc. SPIE 5180, 40–46 (2003). [Google Scholar]
  153. O.W. Fahnle, T. Wons, E. Koch, S. Debruyne, M. Meeder, S.M. Booij, and J.J.M. Braat, “iTIRM as a tool for qualifying polishing processes” Appl. Opt. 41, 4036–4038 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  154. R.M. van der Bijl, O.W. Fahnle, H. van Brug, and J.J.M. Braat, Quantitative roughness measurements with iTIRM (Optical Fabrication and Testing, Québec City, 23 - 27 October 2000). [Google Scholar]
  155. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, “Optical coherence tomography” Science 254, 1178–1181 (1991). [CrossRef] [PubMed] [Google Scholar]
  156. E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujitomo, C.P. Lin, and C.A. Puliafito, “Highspeed optical coherence domain reflectometry” Opt. Lett. 17, 151–153 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  157. J.G. Fujitomo, S. De Silerstri, E.P. Ippen, C.A. Puliafito, R. Margolis, and A. Oseroff, “Femtosecond optical ranging in biological systems” Opt. Lett. 11, 150–152 (1986). [NASA ADS] [CrossRef] [Google Scholar]
  158. R.C. Youngquist, S. Carr, and D.E.N. Dvies, “Optical coherencedomain reflectometry: a new optical evaluation technique” Opt. Lett. 12, 158–160 (1987). [NASA ADS] [CrossRef] [Google Scholar]
  159. V.M. Gelikonov, G.V. Gelikonov, R.V. Kuranov, K.I. Pravdenko, A.M. Sergeev, F.I. Feldshtein, Ya. I. Khanin, and D.V. Shabanov, “Coherent optical tomography of microscopic inhomogeneities in biological tissues” JETP Lett. 61, 158–162 (1995). [NASA ADS] [Google Scholar]
  160. B.G. Goode, “OCT aims for industrial application” Laser Focus World 45(9), 41–45 (2009). [Google Scholar]
  161. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications” Appl. Opt. 49, D30–D61 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  162. J. M. Schmitt, “Optical coherence tTomography (OCT): A review” IEEE J. Sel. Top. Quant. Electron. 5, 1205–1215 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  163. A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications” Rep. Prog. Phys. 66, 239–303 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  164. M. Bashkansky, M.D. Duncan, M. Hahn, D. Lewis III, and J. Reintjes, “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography” Opt. Lett. 22, 61–63 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  165. M. Bashkansky, P.R. Battle, M.D. Duncan, M. Kahn, and J. Reintjes, “Subsurface defect detection in ceramics using an optical gated scatter reflectometer” J. Am. Ceram. Soc. 79, 1397–1440 (1996). [CrossRef] [Google Scholar]
  166. P.R. Battle, M. Bashkansky, R. Mahon and J. Reintjes, “Subsurface defect detection in ceramic materials using optical gating techniques” Opt. Eng. 35, 1119–1123 (1996). [CrossRef] [Google Scholar]
  167. M.D. Duncan, M. Bashkansky, and J. Reintjes, “Subsurface defect detection in materials using optical coherence tomography” Opt. Express 2, 540–545 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  168. M. Sergeeva, K. Khrenikov, T. Hellmuth, and R. Boerret, “Sub surface damage measurements based on short coherent interferometry” J. Euro. Opt. Soc. Rap. Pub. 5, 10002 (2010). [CrossRef] [Google Scholar]
  169. T. Hellmuth, R. Borret, and K. Khrennikov, “3-dimensional scanning of grinded optical surfaces based on optical coherence tomography” Proc. SPIE 6671, 66710X (2007). [NASA ADS] [CrossRef] [Google Scholar]
  170. D. Stifter, P. Burgholzer, O. Hoglinger, E. Gotzinger, and C.K. Hitzenberger, “Polarisationsenstitive optical coherence tomography for material characterisation and strain-field mapping” Appl. Phys. A 76, 947–951 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  171. S.G. Demos, M. Staggs, K. Minoshima, and J. Fujitomo, “Characterization of laser induced damage sites in optical components” Opt. Express 10, 1444–1450 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  172. G.M. Guss, I.L. Bass, R.P. Hackel, C. Maihiot, and S.G. Demos, “In situ monitoring of surface postprocessing in large-aperture fused silica optics with optical coherence tomography” Appl. Opt. 47, 4569–4573 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  173. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography” Appl. Phys. B 88, 337–357 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  174. J. Steinert, S. Gliech, A. Wutting, and A. Duparre, “Advanced methods for surface and subsurface defect characterization of optical components” Proc. SPIE 4099, 290–298 (2000). [CrossRef] [Google Scholar]
  175. A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage characterization of fused silica substrates” Proc. SPIE 3739, 369–376 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  176. http://www.photonics.com/Content/ReadArticle.aspx?ArticleID=29689 [Google Scholar]
  177. W.B. Williams, B.A. Mullany, W.C. Parker, P.J. Moyer, and M.H. Randles, “Using quantum dots to tag subsurface damage in lapped and polished glass samples” Appl. Opt. 48, 5155–5163 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  178. W. Williams, B. Mullany, W. Parker, and P. Moyer, “Evaluating subsurface damage with quantum dots” in Optical Fabrication and Testing OSA Technical Digest, paper OWA3 (Optical Society of America, Jackson Hole, Wyoming, 2010). [Google Scholar]
  179. W. Williams, B.A. Mullany, W.C. Parker, P. Moyer, and M.H. Randles, “Using quantum dots to evaluate subsurface damage depths and formation mechanisms in glass” CIRP Annals-Manuf. Technol. 59, 569–572 (2010). [CrossRef] [Google Scholar]
  180. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm” Opt. Express 13, 10163–10171 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  181. T. Yonushonis, “Manufacturing fluid including fluorescent dye penetrant and method for using to make components” US Patent 6677584 (2004) and references therein. [Google Scholar]
  182. R.S. Polvani and C.J. Evans, “Microindentation as a technique for assessing subsurface damage in optics” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (1990). [Google Scholar]
  183. T. Yamada, N. Morita, and Y. Yoshida, “Newly developed micro-indentation and scratch tester for measuring sub-surface damaged layer” Journal of the Japan Society of Precision Engineering 65, 131–135 (1999) in Japanese. [Google Scholar]
  184. D. Paehler, D. Schneider, and M. Herben, “Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics” Microelectronic Engineering 84, 340–354 (2007). [CrossRef] [Google Scholar]
  185. F. Yang, “Effect of subsurface damage on indentation behavior of ground ULETM glass” J. Non-Crystal. Solids 351, 3861–3865 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  186. P. Cormont, J. Neauport, N. Darbois, J. Destribats, C. Amdard, and O. Rondeau, “Diagnostics tools for subsurface damage characterization of ground silica parts” Proc. SPIE 7504, 75040Y (2009). [NASA ADS] [CrossRef] [Google Scholar]
  187. P.K. Subrahmanyan, K. Pang, T.H. Yu, and R. Salij, “Simultaneous figuring and damage mitigation of optical surfaces” Proc. SPIE 7132, 71321R (2008). [NASA ADS] [CrossRef] [Google Scholar]
  188. Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, H. Mimura, “Creation of perfect surfaces” J. Cyst. Growth 275, 39–50 (2005). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.