Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
Article Number 10027
Number of page(s) 10
DOI https://doi.org/10.2971/jeos.2010.10027
Published online 01 June 2010
  1. S. Mann, and S. Haykin, “The chirplet transform: physical considerations” IEEE T. Signal Proces. 43, 2745–2761 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  2. M. Born, and E. Wolf, Principles of Optics (7th edition, Cambridge University Press, Cambridge, 1999). [CrossRef] [Google Scholar]
  3. J. W. Goodman, and R. W. Lawrence, “Digital image formation from electronically detected holograms” Appl. Phys. Lett. 11, 77 (1967). [CrossRef] [Google Scholar]
  4. L. Onural, and M. Kocatepe, “Family of scaling chirp functions, diffraction, and holography” IEEE T. Signal Proces. 43, 1568–1578 (1995). [CrossRef] [Google Scholar]
  5. L. Cheng, “Simultaneous measurement of displacement and its spatial derivatives with a digital holographic method” Opt. Eng. 42, 3443–3446 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  6. D. Gabor, “A new microscopic principle” Nature 61, 777–778 (1948). [NASA ADS] [CrossRef] [Google Scholar]
  7. J. W. Goodman, Introduction to Fourier Optics (3rd edition, Roberts and Company Publishers, Colorado, 2005). [Google Scholar]
  8. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction” Appl. Opt. 33, 179–181 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  9. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography” Appl. Opt. 23, 4140–4148 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  10. F. Nicolas, S. Coëtmellec, M. Brunel, and D. Lebrun, “Suppression of the Moiré effect in sub-picosecond digital in-line holography” Opt. Express 15, 887–895 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  11. M. Brunel, S. Coëtmellec, D. Lebrun, and K. A. Ameur, “Digital phase contrast with the fractional Fourier transform” Appl. Opt. 48, 579–583 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  12. C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles” Opt. Lasers Eng. 33, 409–421 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  13. S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-dimensional fractional-order Fourier transformation to particle field digital holography” J. Opt. Soc. Am. A. 19, 1537–1546 (2002). [CrossRef] [Google Scholar]
  14. M. Malek, S. Coëtmellec, D. Lebrun, and D. Allano, “Formulation of in-line holography process by a linear shift invariant system: Application to the measurement of fiber diameter” Opt. Commun. 223, 263–271 (2003). [CrossRef] [Google Scholar]
  15. L. Onural, and P. D. Scott, “Digital decoding of in-line holograms” Opt. Eng. 26, 1124–1132 (1987). [Google Scholar]
  16. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis” Opt. Express 14, 5895–5908 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  17. W. Li, N. C. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms” J. Opt. Soc. Am. A. 24, 3054–3062 (2007). [CrossRef] [Google Scholar]
  18. A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen, “On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus” J. Mod. Opt. 51, 687–703 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  19. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., New York, 1970). [Google Scholar]
  20. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (1st edition, Wiley, England, 2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.