Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
Article Number 10001
Number of page(s) 9
DOI https://doi.org/10.2971/jeos.2010.10001
Published online 17 January 2010
  1. W. Welford, and R. Winston, “Nonconventional optical systems and the brightness theorem” Appl. Opt. 21, 1531–1533 (1982). [NASA ADS] [CrossRef] [Google Scholar]
  2. G. Petrovskii, “School of optical material science at the S. I. Vavilov State Optical Institute” J. Opt. Technol. 70, 855–856 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  3. K. Iizuka, and M. Kawakita, “Unconventional Imaging” Opt. Photonics News 13, 61 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  4. E. Marom, N. A. Vainos, A. A. Friesem, and J. W Goodman, “Unconventional Optical Elements for Information Storage, Processing and Communications” (Proceedings of the NATO Advanced Research Workshop, NATO, Tel Aviv, 1999). [Google Scholar]
  5. S. Zhang, “A simple bi-convex refractive laser beam shaper” J. Opt. A - Pure Appl. Opt. 9, 945–950 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  6. N. Passilly, M. Fromager, L. Mechin, C. Gunther, S. Eimer, T. Mohammed-Brahim, and K. Aït-Ameur, “1-D Laser beam shaping using an adjustable binary diffractive optical element” Opt. Commun. 241, 465–473 (2004). [CrossRef] [Google Scholar]
  7. S. Hsiao, C. Lee, and W. Fang, “Novel concave-based micro optical components” (Proceedings of the IEEE 21st International Conference on Micro Electro Mechanical Systems, Institute of Electrical and Electronics Engineers, Tucson, pp. 124–127, 2008). [Google Scholar]
  8. C. T. Pan, and C. H. Su, “Fabrication of gapless triangular microlens array” Sensor. Actuat. A - Phys. 134, 631–640 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  9. M. -C. Chou, C. T. Pan, S. C. Shen, M. -F. Chen, K. L. Lin, and S. -T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array” Sensor. Actuat. A - Phys. 118, 298–306 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. W. -Royall Cox, T. Cheng, and D. J. Hayes, “Micro-optics fabrication by ink-jet printing” Opt. Photonics News 12, 32–35 (2001). [NASA ADS] [Google Scholar]
  11. T. -H. Lin, H. Yang, C. -K. Chao, and S. -Y. Hung, “New high fill-factor triangular microlens array fabrication method using UV proximity printing” Microsyst. Technol. 12, 1255–1261 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  12. W. -H. Lee, and T. Özel, “Laser Micro-Machining of Spherical and Elliptical 3-D Objects using Hole Area Modulation Method” I&SE Working Paper 07–021 (2007). [Google Scholar]
  13. K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication” J. Micromech. Microeng. 15, 873–882 (2005). [CrossRef] [Google Scholar]
  14. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques” Opt. Express 17, 6283–6292 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  15. G. V. Vdovin, O. Akhzar-Mehr, P. M. Sarro, D. W. De Lima Monteiro, and M. Y. Loktev, “Arrays of spherical micromirrors and molded microlenses fabricated with bulk Si micromachining” Proc. SPIE 4945, 107–111 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  16. B. Ezell, “Making microlens backlights grow up” Inform. Display. 17, 42–45 (2001). [Google Scholar]
  17. A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array” Opt. Express 17, 19908–19918 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  18. H. Robbins, and B. Schwartz, “Chemical etching of Silicon I” J. Electrochem. Soc. 106, 505–508 (1959). [CrossRef] [Google Scholar]
  19. H. Robbins, and B. Schwartz, “Chemical etching of Silicon II” J. Electrochem. Soc. 107, 108–111 (1960). [CrossRef] [Google Scholar]
  20. B. Schwartz, and H. Robbins, “Chemical etching of Silicon III” J. Electrochem. Soc. 108, 365–372 (1961). [CrossRef] [Google Scholar]
  21. X. J. Shen, L. Pan, and L. Lin, “Microplastic embossing process: experimental and theoretical characterizations” Sensor. Actuat. A - Phys. 97-98, 428–433 (2002). [CrossRef] [Google Scholar]
  22. B. -K. Lee, D. S. Kim, and T. H. Kwom, “eplication of microlens arrays by injection molding” Microsyst. Technol. 10, 531–535 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  23. P. Huang, T. Huang, Y. Sun, and S. Yang, “Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing” Opt. Express 16, 3041–3048 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  24. J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, “Improvement of UV-moulding accuracy by heat and solvent assisted process” Microelectron. Eng. 85, 263–270 (2008). [CrossRef] [Google Scholar]
  25. J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, “Fabrication of Ni-shims using UV-moulding as an intermediate step” Microelectron. Eng. 83, 492–498 (2006). [CrossRef] [Google Scholar]
  26. X. Zhang, Q. Tang, X. Yi, Z. Zhang, and X. Pei, “Cylindrical microlens array fabricated by argon ion-beam etching” Opt. Eng. 39, 3001 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  27. K. R. Williams, and R. S. Muller, “Etch rates for Micromachining Processing” J. Microelectromech. S. 4, 256–269 (1996). [CrossRef] [Google Scholar]
  28. K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for Micromachining Processing - Part II” J. Microelectromech. S. 12, 761–778 (2003). [CrossRef] [Google Scholar]
  29. V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, “Experimental investigation of anisotropy in isotropic silicon etching” J. Micromech. Microeng. 17, 2344–2351 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  30. C. B. Shin, and D. J. Economou, “Forced and natural convection effects on the shape evolution of cavities during wet chemical etching” J. Electrochem. Soc. 138, 527–538 (1991). [CrossRef] [Google Scholar]
  31. X. G. Zhang, Electrochemistry of silicon and its oxide, (Kluwer Academic/Plenum Publishers 2001). [Google Scholar]
  32. H. K. Kuiken, J. J. Kelly, and P. H. L. Notten, “Etching profiles at resist edges I. Mathematical models for Diffusion-Controlled cases” J. Electrochem. Soc. 133, 1217–1226 (1986). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.