Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
Article Number 09049
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2009.09049
Published online 10 December 2009
  1. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber” Opt. Lett. 22, 961–963 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  2. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers” Opt. Lett. 27, 809–811 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  3. S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers” IEEE Photonic. Tech. L. 18, 1837–1839 (2006). [CrossRef] [Google Scholar]
  4. M. Livitziis, and S. Pissadakis, “Bragg grating recording in low-defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer” Opt. Lett. 33, 1449–1451 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  5. K. Zagorulko, P. Kryukov, Y. Larionov, A. Rybaltovsky, E. Dianov, S. Chekalin, Y. Matveets, and V. Kompanets, “Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation” Opt. Express 12, 5996–6001 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  6. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers” Opt. Lett. 28, 233–235 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  7. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry” Opt. Express 16, 19169–19178 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  8. M. Dubov, I. Bennion, S. A. Slattery, and D. N. Nikogosyan, “Strong long-period fiber gratings recorded at 352 nm” Opt. Lett. 30, 2533–2535 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  9. G. Violakis, and S. Pissadakis, Improved efficiency Bragg grating inscription in a commercial solid core microstructured optical fiber’ (9th International Conference on Transparent Optical Networks, Rome, 2, pp. 217–220, 1–5 July 2007). [Google Scholar]
  10. V. Beugin, L. Bigot, P. Niay, M. Lancry, Y. Quiquempois, M. Douay, G. Mélin, A. Fleureau, S. Lempereur, and L. Gasca, “Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber” Appl. Opt. 45, 8186–8193 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  11. J. Canning, “Gratings and grating devices in structured fibers using 193 nm from an ArF laser” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: Applications and Fundamentals, OSA Technical Digest Series, Vol. 17 (Optical Society of America, Washington, 2007). [Google Scholar]
  12. J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, “Gratings in Structured Optical Fibres” Laser Chem. 2008, 239417 (2008). [CrossRef] [Google Scholar]
  13. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings” Opt. Express 15, 7876–7887 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  14. T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber bragg gratings in germanium-doped highly birefringent microstructured optical fibers” IEEE Photonic. Tech. L. 20, 554–556 (2008). [CrossRef] [Google Scholar]
  15. A. J. Taylor, R. B. Gibson, and J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials” Opt. Lett. 13, 814–816 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  16. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide” J. Non-Cryst. Solids 239, 16–48 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  17. C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica” Appl. Phys. Lett. 78, 2452–2454 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  18. http://www.sei.co.jp/fbr-opt-eng/submarine/zfiber/zfiber.html [Google Scholar]
  19. M. Alam, J. Abramczyk, U. Manyam, J. Farroni, and D. Guertin, “Performance of optical fibers in space radiation environment” (6th International Conference on Space Optics, Proceedings of ESA/CNES ICSO 2006, Noordwijk, p. 107.1, 27–30 June 2006). [Google Scholar]
  20. A. Othonos, and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999). [Google Scholar]
  21. http://www.crystal-fiber.com/ [Google Scholar]
  22. C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, “Characteristics of hydrogenated fiber Bragg gratings” Appl. Phys. A 64, 191–197 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  23. S. Pissadakis, M. Livitziis, G. Violakis, and M. Konstantaki, “Inscription of Bragg reflectors in all-silica microstructured optical fibers using 248nm, picosecond, and femtosecond laser radiation” Proc. SPIE 6990, 69900H (2008). [NASA ADS] [CrossRef] [Google Scholar]
  24. http://www.optiwave.com [Google Scholar]
  25. P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core” Opt. Commun. 155, 386–397 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  26. S. Kannan, M. E. Fineman, J. Li, and G. H. SigelJr., “Nonuniform distribution of oxygen hole centers in silica optical fibers” Appl. Phys. Lett. 63, 3440–3442 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  27. H. Hosono, M. Mizuguchi, L. Skuja, and T. Ogawa, “Fluorine-doped SiO2 glasses for F2 excimer laser optics: fluorine content and color-center formation” Opt. Lett. 24, 1549–1551 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  28. H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber” Opt. Express 15, 5610–5615 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  29. A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, “Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm” J. Lightwave Technol. 23, 2568–2578 (2005). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.