Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
|
|
---|---|---|
Article Number | 09048 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.2971/jeos.2009.09048 | |
Published online | 30 November 2009 |
- V. S. Ignatowsky, “Diffraction of a lens of arbitrary aperture” Trans. Opt. Inst. 1, 1–36 (1919). [Google Scholar]
- E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image” Proc. Roy. Soc. London A 253, 349–357 (1959). [NASA ADS] [CrossRef] [Google Scholar]
- B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system” Proc. Roy. Soc. London A 253, 358–379 (1959). [NASA ADS] [CrossRef] [Google Scholar]
- H. Ling, and S. Lee, “Focusing of electromagnetic waves through a dielectric interface” J. Opt. Soc. Am. A 1, 965–973 (1984). [NASA ADS] [CrossRef] [Google Scholar]
- P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation” J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef] [Google Scholar]
- A. Egner, and S. W. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch” J. Microsc. 193, 244–249 (1999). [CrossRef] [Google Scholar]
- C. Sheppard, and C. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties” Optik 87, 34–38 (1991). [Google Scholar]
- S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index” J. Microsc. 169, 391–405 (1993). [CrossRef] [Google Scholar]
- D. G. Flagello, and T. D. Milster, “Three-dimensional modeling of high-numerical-aperture imaging in thin films” Proc. SPIE 1625, 246–261 (1992). [CrossRef] [Google Scholar]
- D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films” J. Opt. Soc. Am. A 13, 53–64 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005). [CrossRef] [Google Scholar]
- M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices” J. Appl. Phys. 67, 6466–6475 (1990). [CrossRef] [Google Scholar]
- M. Mansuripur, “Effects of high-numerical-aperture focusing on the state of polarization in optical and magneto-optical data storage systems” Appl. Opt. 30, 3154–3162 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system” Opt. Exp. 12, 1281–1293 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi-Layer Near-Field Recording System: Dual-Layer Recording Results” Jpn. J. Appl. Phys. 46, 3894–3897 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- C. J. R. Sheppard, T. J. Connolly, J. Lee, and C. J. Cogswell, “Confocal imaging of a stratified medium” Appl. Opt. 33, 631–640 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions” J. Opt. Soc. Am. A 19, 849–857 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions” J. Opt. Soc. Am. A 19, 858–870 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory” Proc. SPIE 6924, 69240U (2008). [NASA ADS] [CrossRef] [Google Scholar]
- S. van Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the Extended Nijboer-Zernike theory” J. Opt. Soc. Am. A 26, 1221–1234 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. Lee, M. van der Aa, C. Verschuren, F. Zijp, and M. van der Mark, “Development of an air gap servo system for high data transfer rate near-field optical recording” Jpn. J. Appl. Phys. 44, 3423–3426 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen, “On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus” J. Mod. Opt. 51, 687–703 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, and P. Dirksen, “Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform” J. Europ. Opt. Soc. Rap. Public. 2, 07012 (2007). [CrossRef] [Google Scholar]
- A. J. E. M. Janssen, and P. Dirksen, “Concise formula for the Zernike coefficients of scaled pupils” J. Microlithogr. Microfabr. Microsyst. 5, 030501 (2006). [Google Scholar]
- M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions, 9th Edition. (Dover Publications Inc., New York, 1972). [Google Scholar]
- G. E. Andrews, R. Askey, and R. Roy, “Special Functions” in Encyclopedia of Mathematics and its Applications, Vol. 71 (Cambridge University Press, Cambridge, 1999). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.