Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
Article Number 09026
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2009.09026
Published online 01 June 2009
  1. F. Twyman, Prism and Lens making 2nd ed. (Hilger & Watts, London, 1952). [Google Scholar]
  2. J. R. Wimperis and S. F. Johnston, “Optical cements for interferometric applications” Appl. Opt. 23, 1145 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  3. C. Park, S. Lee, J. H. Lee, J. Lim, S. G. Lee, M. Park, S. S. Lee, J. Kim, C. R. Park, and C. Kim, “Controlled assembly of carbon nanotubes encapsulated with amphiphilic block copolymer” Carbon 45, 2072 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  4. H. Zhao, Z. Fu, Y. X. Wu, and Y. Z. Zhao, “Design and implementation of an auto bonding manufacturing process for space solar cells” Mater. Manuf. Process. 22, 851 (2007). [CrossRef] [Google Scholar]
  5. J. Haisma and G. A. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: Historical review in a broader scope and comparative outlook” Mat. Sci. Eng. R. 37, 1 (2002). [Google Scholar]
  6. O. M. Akelsen, “Diffusion bonding of ceramics” J. Mater. Sci. 27, 569 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  7. A. Plossi and G. Krauter, “Wafer direct bonding: tailoring adhesion between brittle materials” Mat. Sci. Eng. R. 25, 1 (1999). [CrossRef] [Google Scholar]
  8. V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates” J. Opt. A-Pure Appl. Op. 3, 85 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  9. B. Rubinstein, S. M. Jackel, R. Feldman, and Y. Shimony, “Effect of interactivity diffusion-bonded optical elements on laser performance”, Proc. SPIE 5460, 141 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  10. S. Sivasankar and S. Chu, “Optical Bonding Using silica nanoparticale sol-gel chemistry” Nano lett. 7, 3031 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  11. M. Keranen, M. Gnyba, P. Raerinne, T. Kololuoma, A. Maaninen, and J. T. Rantala, “Synthesis and Characterization of Optical Sol-Gel Adhesive for Military Protective Polycarbonate Resin” J. Sol-Gel Sci. Techn. 31, 369 (2004). [CrossRef] [Google Scholar]
  12. Boeing and Wright-Patterson Air Force base, “Sol-Gel adhesive bonding of metals - AC-130”, US patent 5807430 (1998). [Google Scholar]
  13. L. C. Klein, Sol-Gel Technology For Thin Films, Performs, Electronics, and Specialty Shapes (Noyes, New Jersey, 1988). [Google Scholar]
  14. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990). [Google Scholar]
  15. L. C. Klein, Sol-Gel Optics: Processing and Applications (Kluwer Academic Publishers, Boston, 1993). [Google Scholar]
  16. Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, “Light amplification in a dye-doped glass planar waveguide” Appl. Phys. Lett. 66, 1169 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  17. W. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, H. T. Tan, and C. H. Kam, “Sol-gel processed silica/titania/ÿ-Glycidoxypropyl-trimethoxysilane composite materials for photonic applications” J. Electron. Mater. 29, 1052 (2000). [CrossRef] [Google Scholar]
  18. W. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Optical and microstructural properties of sol-gel derived titania/organically modified silane thin films” Thin Solid Films 358, 16 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  19. P. Innocenzi, A. Martucci, M. Guglielmi, L. Armelao, S. Pelli, G. C. Righini, and G. C. Battaglin, “Optical and surface properties of inorganic and hybrid organic-inorganic silica-titania sol-gel planar waveguides” J. Non-Cryst. Solids 259, 182 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  20. C. C. Chang and W. C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydridetitania hybrid materials” J. Polym. Sci. Pol. Chem. 39, 3419 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  21. L. H. Lee and W. C. Chen, “High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)- Titania Materials” Chem. Mater. 13, 1137 (2001). [CrossRef] [Google Scholar]
  22. M. Ojha, W. N. Gill, Plawsky, and W. Cho, “Fabrication of ultrathin (100nm), low-index nanoporous silica films for photonic devices: Role of substrate adhesion on the film thickness” J. Vac. Sci. Technol. B 24, 1109 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  23. B. S. Bae, “High Photosensitive Sol-Gel Hybrid Materials for Direct Photo-Imprinting of Micro-Optics” J. Sol-Gel Sci. Techn. 31, 309 (2004). [CrossRef] [Google Scholar]
  24. H. Dislich, “Thin films from the sol-gel process” in Sol-Gel technology for thin films, fibers, preforms, electronics, and specialty shapes, L. C. Klein, ed., Chapter 4 (Noyes, New Jersey, 1988). [Google Scholar]
  25. R. Gvishi and R. Reisfeld, “Spectroscopy of laser dye oxazine-170 in sol-gel glasses” J. Non-Cryst. Solids 128, 69 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  26. R. Gvishi, G. Strum, N. Shitrit, and R. Dror, “Optical waveguide fabrication using a fast sol-gel method” Opt. Mater. 30, 1755 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  27. R. Gvishi, A. Englander, and G. Peleg, “Multi-parameter evaluation of fast sol-gel process by terahertz measurements” J. Sol-Gel Sci. Techn. 48, 18 (2008). [CrossRef] [Google Scholar]
  28. R. Gvishi, “Fast sol-gel from fabrication to applications” J. Sol-Gel Sci. Techn. 50, 241 (2008). [Google Scholar]
  29. N. B. Cothup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press, New-York and London, 1964). [Google Scholar]
  30. A. Fidalgo and L. M. Ilharco, “The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR” J. Non-Cryst. Solids 283, 144 (2000). [Google Scholar]
  31. J. Jabbour, S. Calas, S. Gatti, R. K. Kribich, M. Myara, G. Pille, P. Etienne, and Y. Moreau, “Characterization by IR spectroscopy of an hybrid sol-gel material used for photonic devices fabrication” J. Non-Cryst. Solids 354, 651 (2007). [Google Scholar]
  32. D. L. Ou and A. B. Seddon, “Near- and mid-infrared spectroscopy of sol-gel derived ormosils: vinyl and phenyl silicates” J. Non-Cryst. Solids 210, 187 (1997). [CrossRef] [Google Scholar]
  33. U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, L. Froehlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic-organic hybrid) polymers” Opt. Mater. 21, 475 (2002). [Google Scholar]
  34. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J. U. Park, L. Froehlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Waechter, and A. Braeuer, “Inorganic-organic hybrid materials for application in optical devices” Thin Solid Films 442, 194 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  35. U. Haas, A. Haase, V. Satzinger, H. Pichler, G. Leising, G. Jakopic, B. Stadlober, R. Houbertz, G. Domann, and A. Schmitt, “Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin-film transistors” Phys. Rev. B 73, 235339 (2006). [CrossRef] [Google Scholar]
  36. X. M. Du, T. Touam, L. Degachi, J. L. Guilbault, M. P. Andrews, and S. I. Najafi, “Sol-gel waveguide fabrication parameters: an experimental investigation” Opt. Eng. 37, 1101 (1998). [CrossRef] [Google Scholar]
  37. P. Gupta, P. P. Markowicz, K. Baba, J. O’reilly, M. Samoc, and P. N. Prasad, “DNA-Ormocer based biocomposite for fabrication of photonic structures” Appl. Phys. Lett. 88, 213109 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  38. Y. H. Han, A. Taylor, M. D. Mantle, and K. M. Knowles, “UV-curing of organic-inorganic hybrid coating” J. Sol-Gel Sci. Techn. 43, 111 (2007). [CrossRef] [Google Scholar]
  39. G. Brustatin, G. Della Giustina, M. Guglielmi, F. Romanato, P. Prosposito, M. Casalboni, and C. Palazzesi, Patternable hybrid sol-gel materials based on silica network modified with epoxy group, p. 75. (First Mediterranean Photonics Conference, Ischia, 25-28 June 2008). [Google Scholar]
  40. M. Guglielmi, M. G. Brusatin, and G. D. Giustina, “Hybrid glass-like films through sol-gel techniques” J. Non-Cryst. Solids 353, 1681 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  41. R. Gvishi, M. Pokrass, and G. Strum, Strong optical bonding with fast sol-gel material, p. 45. (First Mediterranean Photonics Conference, Ischia, 25-28 June 2008). [Google Scholar]
  42. S. Yan, J. Yin, J. Yang, and X. Chen, “Structural characteristics and thermal properties of plasticized poly(l-lactide)-silica nanocomposites synthesized by sol-gel method” Mater. Lett. 61, 2683 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  43. B. Li, Y. Hakuta, and H. Hayashi, “The synthesis of titanoniobate compound characteristic of various particle morphologies through a novel solvothermal route” Mater. Lett. 61, 3791 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  44. P. H. Perez, T. A. Ochoa, T. Viveros, and A. Montoya, “Influence of the Synthesis Method on the Properties of Ceria-Doped Alumina” J. Sol-Gel Sci. Techn. 37, 49 (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.