Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
Article Number 09011
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2009.09011
Published online 20 March 2009
  1. J. Ashley, M.-P. Bernal, G. Burr, H. Coufal, H. Guenther, J. Hoffnagle, C. Jefferson, B. Marcus, R. Macfarlane, R. Shelby, and G. Sincerbox, “Holographic Data Storage” IBM J. Res. Dev. 44, 341–368 (2000). [CrossRef] [Google Scholar]
  2. Y. Kawata, H. Ueki, Y. Hashimoto, and S. Kawata, “Three-dimensional optical memory with a photorefractive crystal” Appl. Optics 34, 4105 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  3. D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple Storage and Erasure of fixed holograms in Fe doped LiNbO3” Appl. Phys. Lett. 26, 182–184 (1975). [NASA ADS] [CrossRef] [Google Scholar]
  4. C. Hsieh, S. Lin, K. Hsu, T. Hsieh, A. Chiou, and J. Hong, “Optimal conditions for thermal fixing of volume holograms in Fe:LiNbO3 crystals” Appl. Optics 38, 6141–6151 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  5. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, “Origin of thermal fixing in photorefractive lithium niobate crystals” Phys. Rev. B 56, 1225–1235 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  6. D. Staebler and J. Amodei, “Thermally fixed holograms in LiNbO3” Ferroelectrics 3, 107–113 (1972). [NASA ADS] [CrossRef] [Google Scholar]
  7. A. Medez and L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate” Opt. Mater. 10, 55 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  8. V. Gaba, D. Sugak, and I. Kravchuk, “On the possible application of LiNbO3 single crystals as temperature indicators on the base of their temperature dependencies of birefringence”, in Optics and Nonlinear Optics of Liquid Crystalline Compounds pp. 321–324 (SPIE, 1996). [Google Scholar]
  9. G. Chartier, Introduction to optics (Springer, 2005). [Google Scholar]
  10. K. Wong (ed.), Properties of lithium niobate (Institute of Engineering and Technology, 2002). [Google Scholar]
  11. Y. Kim and R. Smith, “Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals” J. Appl. Phys. 40, 4637–4641 (1969). [NASA ADS] [CrossRef] [Google Scholar]
  12. L. Moretti, M. Iodice, F. Della Corte, and I. Rendina, “Temperature dependencies of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions” J. Appl. Phys. 98, 036101–05 (2005). [CrossRef] [Google Scholar]
  13. F. Chau, H. Shang, C. Soh, and Y. Hung, “Determination of fractional fringe orders in holographic interferometry using polarization phase shifting” Opt. Laser Technol. 25, 371–375 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  14. U. Schlarb and K. Betzler, “Refractive Indices of Lithium Niobate as a Function of Temperature, Wavelength, and Composition: A Generalized Fit” Phys. Rev. B 48, 15613–15620 (1993). [CrossRef] [Google Scholar]
  15. A. Ashkin, G. Boyd, J. Dziedzic, R. Smith, A. Ballman, J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3” Appl. Phys. Lett. 9, 72–74 (1966). [NASA ADS] [CrossRef] [Google Scholar]
  16. F. Zhao, H. Zhou, Z. Wu, F. Yu, and D. McMillen, “Temperature dependence of light-induced scattering in a Ce:Fe:LiNbO3 photorefractive crystal” Opt. Eng. 35, 1985–1992 (1996). [CrossRef] [Google Scholar]
  17. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate” Opt. Lett. 18, 915–917 (1993). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.