Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
|
|
---|---|---|
Article Number | 09006 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2009.09006 | |
Published online | 25 February 2009 |
- A. Lisauskas, W. von Spiegel, S. Boubanga-Tombet, A. El Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors” Electron. Lett. 44, 408 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R. Gaska, M. S. Shur, G. Simin, X. Hu, M. Asif Khan, C. A. Saylor, and L. C. Brunel, “Nonresonant detection of terahertz radiation in field effect transistors” J. Appl. Phys. 91, 9346 (2002). [CrossRef] [Google Scholar]
- F. Teppe, W. Knap, D. Veksler, M. S. Shur, A. P. Dmitriev, V. Yu Kachorovskii, and S. Rumyantsev, “Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor” Appl. Phys. Lett. 87 052107 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors” Appl. Phys. Lett. 89, 131926 (2006) [NASA ADS] [CrossRef] [Google Scholar]
- M. Lee, M. C. Wanke, and J. L. Reno, “Millimeter wave mixing using plasmon and bolometric response in a double-quantum-well field-effect transistor” Appl. Phys. Lett. 86, 033501 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- M. Peroni, P. Romanini, A. Pantellini, L. Mariucci, A. Minotti, G. Ghione, V. Camarchia, E. Limiti, A. Serino, and A. Chini, “Design, Fabrication and Characterization of Gamma-gate GaN HEMT for High-Frequency/Wide-Band applications” Proceedings of 31st Workshop on Compound Semiconductor Devices and Integrated Circuits (WOCSDICE), 371–378 (Venice, Italy, 2007). [Google Scholar]
- F. Ciocci, R. Bartolini, A. Doria, G. P. Gallerano, E. Giovenale, M. F. Kimmitt, G. Messina, and A. Renieri, “Operation of a compact free-electron laser in the millimeter-wave region with a bunched electron beam” Phys. Rev. Lett. 70, 928 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- A. Doria, G. P. Gallerano, M. Germini, E. Giovenale, A. Lai, G. Messina, I. Spassovsky, F. Valente, and L. D’Aquino, “Reflective terahertz imaging at the ENEA FEL facility” IEEE P. IRMMW-Thz. 255 (2005). [Google Scholar]
- A. Coppa, V. Foglietti, E. Giovine, A. Doria, G.P. Gallerano, E. Giovenale, A. Cetronio, C. Lanzieri, M. Peroni, and F. Evangelisti, “Active electric near field imaging of electronic devices” Infrared Phys. Techn. 51, 470 (2008). [CrossRef] [Google Scholar]
- J. Dyson, “Measurement of near fields of antennas and scatterers” IEEE T. Antenn. Propag. 21, 446 (1973). [CrossRef] [Google Scholar]
- A. D. Yaghijan, “Efficient computation of antenna coupling and fields within the near-field region” IEEE T. Antenn. Propag. 30, 113 (1982). [CrossRef] [Google Scholar]
- M. Sakowicz, J. Lusakowski, K. Karpierz, M. Grynberg, W. Knap, and W. Gwarek, “Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors” J. Appl. Phys. 104, 024519 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- A. Boag, Y. Shimony, and R. Mittra, “Dual band cavity-backed quarter-wave patch antenna” IEE P-Microw Anten P, 2124 (1995). [Google Scholar]
- T. D. Ormiston, P. Gardner, and P. S. Hall, “Microstrip short-circuit patch design equations” Microw. Opt. Techn. Let. 16, 12 (1997). [CrossRef] [Google Scholar]
- K. S. Yngvesson, “Ultrafast two-dimensional electron gas detector and mixer for terahertz radiation” Appl. Phys. Lett. 76, 777 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- J.-Q. Lü and M. S. Shur, “Terahertz detection by high-electron-mobility transistor: Enhancement by drain bias” Appl. Phys. Lett. 78, 2587 (2001). [CrossRef] [Google Scholar]
- R. A. Pucel, D. Masse, and R. Bera, “Performance of GaAs MESFET Mixers at X Band” IEEE T. Microw. Theory 24, 351 (1976). [CrossRef] [Google Scholar]
- M. Kim, J. B. Hacker, E. A. Sovero, D. S. Deakin, and J. H. Hong, “A millimeter-wave multifunction HEMT mixer” IEEE Microw. Guided W. 9, 154 (1999). [CrossRef] [Google Scholar]
- J. Zawels, “The transistor as a mixer” P. IRE 42, 542 (1954). [CrossRef] [Google Scholar]
- T. G. Phillips and D. P. Woody, “Millimeter- and submillimeter-wave receivers” Annu. Rev. Astron. Astr. 20, 285 (1982). [CrossRef] [Google Scholar]
- H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerald, and N. R. Erickson, “Far-IR heterodyne radiometric measurements with quasioptical Schottky diode mixers” Appl. Phys. Lett. 33, 151 (1978). [NASA ADS] [CrossRef] [Google Scholar]
- G. N. Goltsman and D. N. Loudkov, “Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy” Radio. Quantum. Electron. 46, 604 (2004). [Google Scholar]
- A. D. Semenov, H.-W. Hübers, J. Schubert, G. N. Goltsman, A. I. Elantiev, B. M. Voronov, and E. M. Gershenzon, “Design and performance of the lattice-cooled hot-electron terahertz mixer” J. Appl. Phys. 88, 6758 (2000). [CrossRef] [Google Scholar]
- P. Khosropanah, J. R. Gao, W. M. Laauwen, M. Hajenius, and T. M. Klapwijk, “Low noise NbN hot electron bolometer mixer at 4.3 THz” Appl. Phys. Lett. 91, 221111 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- J. Kawamura, J. Chen, D. Miller, J. Kooi, J. Zmuidzinas, B. Bumble, H. G. LeDuc, and J. A. Stern, “Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers” Appl. Phys. Lett. 75, 4013 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, “2.5-THz GaAs monolithic membrane-diode mixer” IEEE T. Microw. Theory 47, 596 (1999). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.