Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
|
|
---|---|---|
Article Number | 08020 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2008.08020 | |
Published online | 06 June 2008 |
- “Holographic Data Storage” in Springer Series in Optical Sciences, H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., (Springer-Verlag, 2000). [Google Scholar]
- See for instance the roadmap of the “International Storage Symposium on Optical Memory and Optical Data Storage” available at http://www.isom.jp/. [Google Scholar]
- S.S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-Transfer-Rate High-Capacity Holographic Disk Data-Storage System” Appl. Optics 43, 4902–4914 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- G. Lippmann, “La photographie des couleurs” C.R. Hebd. Acad. Sci. 112, 274–275 (1891). [Google Scholar]
- G. Lippmann, “Sur la théorie de la photographie des couleurs simples et composées par la méthode interférentielle” J. Phys. (France) 3, 97–107 (1894). [Google Scholar]
- P. Connes, “Silvers salts and standing waves: the history of interference colour photography” J. Opt. 18, 147–166 (1987). [CrossRef] [Google Scholar]
- J.M. Fournier, and P.L. Burnett, “Color rendition and archival properties of Lippmann photographs”, J. Imaging Sci. Techn. 38, 507–512 (1994). [Google Scholar]
- Y.N. Denisyuk, “The imaging of the optical properties of an object in a wave field of radiation scattered by it” Opt. Spectrosc. 15, 279–284 (1963). [Google Scholar]
- Y.N. Denisyuk, “Imaging properties of light intensity waves: the development of the initial Lippmann ideas” J. Opt. 22, 275–280 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording” Opt. Express 15, 16196–16209 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers” J. Opt. A: Pure Appl Op 3, 72–81 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method” Opt. Commun. 85, 171–176 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage” in Optical and Electro-Optical Information Processing (MIT Press, 1965). [Google Scholar]
- A.S. Hoffman, “Optical information storage in three-dimensional media using the Lippmann Technique” Appl. Optics 1949–1954 (1968). [CrossRef] [Google Scholar]
- A. Labeyrie, J.P. Huignard, and B. Loiseaux, “Optical data storage in microfibers” Opt. Lett. 23, 301–303 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- G. Maire, G. Pauliat, and G. Roosen, “Homodyne detection readout for bit-oriented holographic memories” Opt. Lett. 31, 175–177 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J.-J. Yang, and M.-R. Wang, “White light micrograting multiplexing for high density data storage” Opt. Lett. 31, 1304–1306 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microgratings in photopolymer for data storage” Opt. Express 5, 2234–2243 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- P. Wu, Z. Liu, J.J. Yang, A. Flores, and M.R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage” Opt. Express 15, 17798–17804 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives” JOSA A 3, 2086–2093 (1986). [NASA ADS] [CrossRef] [Google Scholar]
- P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lorincz, “System modeling and optimization of Fourier holographic memory” Appl. Opt. 44, 3024–3031 (2005). [CrossRef] [Google Scholar]
- K.M. Chugg, X. Chen, and M.A. Neifeld, “Two-dimensional equalization in coherent and incoherent page-oriented optical memory” J. Opt. Soc. Am. 16, 549–562 (1999). [CrossRef] [Google Scholar]
- M. Keskinoz, and B.V.K.V. Kumar, “Discrete magnitude-squared channel modelling, equalization, and detection for volume holographic storage channels” Appl. Optics 43, 1368–1378 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- H. Kogelnik, “Coupled wave theory for thick hologram gratings” AT&T Tech. J. 48, 2909–2947 (1969). [NASA ADS] [Google Scholar]
- K. Curtis, C. Gu, and D. Psaltis, “Cross talk in wavelength multi-plexed holographic memories” Opt. Lett. 18, 1001–1003 (1993). [CrossRef] [Google Scholar]
- G.A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms” Opt. Lett. 17, 1471–1473 (1992). [CrossRef] [Google Scholar]
- G.W. Burr, J. Ashley, H. Coufal, R.K. Grygier, J.A. Hoffnagle, C.M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage” Opt. Lett. 22, 639–641 (1997). [CrossRef] [Google Scholar]
- G.W. Burr, C.M. Jefferson, H. Coufal, M. Jurich, J.A. Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250 gigapixels/in.2” Opt. Lett. 26, 444–446 (2001). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.