Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
Article Number 08019
Number of page(s) 10
DOI https://doi.org/10.2971/jeos.2008.08019
Published online 27 May 2008
  1. J.M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye” Opt. Lett. 24, 64–66 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  2. B. Laude-Boulesteix, A. de Martino, B. Drévillon, and L. Schwartz, “Mueller Polarimetric Imaging System with Liquid Crystals” Appl. Optics 43, 2824–2832 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  3. P.-Y. Gerligand, R. A. Chipman, E. A. Sornsin, and M. H. Smith, “Polarization signatures of spherical and conical targets measured by Mueller matrix imaging polarimetry” in Polarization: Measurement, Analysis, and Remote Sensing D. H. Goldstein and R. A. Chipman, eds. 3121, 63–73 (Proc. SPIE, San Diego, USA 1997). [NASA ADS] [CrossRef] [Google Scholar]
  4. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering Target Detection in a Turbid Medium by Polarization Discrimination” Appl. Optics 38, 3937–3944 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  5. B. J. Deboo, J. M. Sasian, and R. A. Chipman, “Depolarization of diffusely reflecting man-made objects” Appl. Optics 44, 5434–5445 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. Floc’h, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices” Eur Phys J-Appl Phys 3, 349–358 (1998). [CrossRef] [EDP Sciences] [Google Scholar]
  7. G. W. Kattawar and M. J. Rakovic, “Virtues of Mueller Matrix Imaging for Underwater Target Detection” Appl Optics 38, 6431–6438 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  8. M. Alouini, D. Dolfi, F. Goudail, and P. Réfrégier, “Detection enhancement of low contrast targets through active multispectral polarimetric imaging” in Advanced Imaging Techniques, 10–12 (EOS Topical Meeting on Advanced Imaging Techniques, Delft, 2003). [Google Scholar]
  9. F. A. Sadjadi, “Passive three-dimensional imaging using polarimetric diversity” Opt. Lett. 32, 229–231 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  10. O. Morel, C. Stolz, F. Mériaudeau, and P. Gorria, “Active Lighting Applied to 3D Reconstruction of Specular Metallic Surfaces by Polarization Imaging” Appl. Optics 45, 4062–4068 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  11. J.-Y. Lin, K.-H. Chen, and J.-H. Chen, “Optical method for measuring optical rotation angle and refractive index of chiral solution” Appl. Optics 46, 8134–8139 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  12. R. Hegedus, S. Akesson, and G. Horvath, “Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies” J. Opt. Soc. Am. A 24, 2347–2356 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  13. D. Goldstein, Polarized light second edition (Marcel Dekker, NewYork Basel, 2003). [Google Scholar]
  14. F. A. Sadjadi and C. S. L. Chun, “Remote sensing using passive infrared Stokes parameters” Opt. Eng. 43, 2283–2291 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  15. L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, “Liquid crystal polarization camera” IEEE T. Robotic. Autom. 13, 195–203 (1997). [CrossRef] [Google Scholar]
  16. Y. Hanaoka, “Ferroelectric Liquid Crystal Polarimeter for Highcadence Halpha Imaging Polarimetry” Solar Physics 222, 265–278 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  17. R. A. Chipman, “Depolarization index and the average degree of polarization” Appl. Optics 44, 2490–2495 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  18. M. Alouini, F. Goudail, P. Refregier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast” in Polarization: Measurement, Analysis, and Remote Sensing VI, D. H. Goldstein and D. B. Chenault, eds. 5432, 133–144 (Proc. SPIE, Orlando, USA, 2004). [CrossRef] [Google Scholar]
  19. M. W. Williams, “Depolarization and cross polarization in ellipsometry of rough surfaces” Appl. Optics 25, 3616–3622 (1986). [NASA ADS] [CrossRef] [Google Scholar]
  20. P. Clémenceau, A. Dogariu, and J. Stryewski, “Polarization active imaging” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, and V. V. Molebny, eds. 4035, 401–409 (Proc. SPIE, Orlando, USA, 2000). [CrossRef] [Google Scholar]
  21. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error” Appl. Optics 41, 619–630 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  22. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. Devlaminck, “Target detection with a Liquid Crystal-based passive Stokes polarimeter” Appl. Optics 43, 274–282 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  23. Meadowlark-Optics, “Stokes Polarimetry Using Liquid-Crystal Variable Retarders” (2001), http://www.meadowlark.com. [Google Scholar]
  24. A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry” Opt. Eng. 38, 1402–1408 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  25. K. A. Bauchert, S. A. Serati, and A. Furman, “Advances in liquid crystal spatial light modulators” in Optical Pattern Recognition XIII, D. P. Casasent and T.-H. Chao, eds. 4734, 35–43 (Proc. SPIE, Orlando, USA, 2002) [NASA ADS] [CrossRef] [Google Scholar]
  26. S. A. Serati, G. D. Sharp, R. A. Serati, D. J. McKnight, and J. E. Stockley, “128 × 128 analog liquid crystal spatial light modulator” in Optical Pattern Recognition VI, D. P. Casasent and T.-H. Chao, eds. 2490, 378–387 (Proc. SPIE, Orlando, USA, 1995). [NASA ADS] [CrossRef] [Google Scholar]
  27. K. A. Bauchert and S. A. Serati, “High-speed multi-level 512x512 spatial light modulator” in Optical Pattern Recognition XI, D. P. Casasent and T.-H. Chao, eds. 4043, 59–65 (Proc. SPIE, Orlando, USA, 2000). [NASA ADS] [CrossRef] [Google Scholar]
  28. Boulder-Nonlinear-Systems, “Liquid crystal spatial light modulator: 512 × 512 multi-level/analog” (2002), http://www.bnonlinear.com/productframeset.html. [Google Scholar]
  29. L. Bigué, L. Jourdainne, and P. Ambs, “High speed ferroelectric gray-scale spatial light modulator for implementing diffractive optical elements” in Diffractive Optics and Micro-Optics, R. Magnusson, ed. TOPS 75, 58–62 (OSA, Tucson, USA, 2002). [Google Scholar]
  30. A. Jaulin, L. Bigué, and P. Ambs, “High-speed degree of polarization imaging with a ferroelectric liquid crystal modulator” Opt. Eng. 47, 033201 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  31. S. Guyot, M. Anastasiadou, E. Deléchelle, and A. de Martino, “Registration scheme suitable to Mueller matrix imaging for biomedical applications” Opt. Express 15, 7393–7400 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  32. L. Gendre, A. Foulonneau, and L. Bigué, “Correction of erroneous degree of polarization of moving objects in a video sequence” in Polarization: Measurement, Analysis, and Remote Sensing VIII, D. B. Chenault and D. H. Goldstein, eds. 6972, 69720R (Proc. SPIE, Orlando, USA, 2008) [NASA ADS] [Google Scholar]
  33. J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation” in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, M. K. Giles, eds. 5553, 58–67 (Proc. SPIE, Denver, USA, 2004). [NASA ADS] [CrossRef] [Google Scholar]
  34. W. N. Hart, C. M. Roggemann, A. Sergeyev, and J. T. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval” Opt. Eng. 46, 086601 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  35. L. Bigué and N. Cheney, “High-speed portable polarimeter using a ferroelectric liquid crystal modulator” in Polarization Science and Remote Sensing III, J. A. Shaw and J. S. Tyo, eds., 6682, 668205 (Proc. SPIE, San Diego, USA, 2007). [CrossRef] [Google Scholar]
  36. J.E. Ahmad, and Y. Takakura, “Improving Segmentation Maps using Polarization Imaging” in ICIP 2007 1, I-281–I-284 (IEEE, San Antonio, USA, 2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.