Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
Article Number 08011
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2008.08011
Published online 06 March 2008
  1. D. A. Cremers and L. J. Radziemski, Handbook of laser-induced breakdown spectroscopy (Wiley, 2006). [CrossRef] [Google Scholar]
  2. A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo and H. J. L. van der Steen, “Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique” Appl. Phys. B 63, 185 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  3. J. Gruber, J. Heitz, H. Strasser, D. Bauerle and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown” Spectrochim. Acta B 56, 685 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  4. L. St-Onge, E. Kwong, M. Sabsabi and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy” Spectrochim. Acta B 57, 1131 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  5. M. Z. Martin, S. D. Wullschleger, C. T. Garten, Jr., and A. V. Palumbo, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils” Appl. Optics 42, 2072 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  6. S. Morel, N. Leone, P. Adam, and J. Amouroux, “Detection of Bacteria by Time-Resolved Laser-Induced Breakdown Spectroscopy” Appl. Optics 42, 6184 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  7. A. K. Knight, N. L. Scherbarth, D. A. Cremers and M. J. Ferris, “Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration” Appl. Spectrosc. 54, 331 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  8. R. C. Wiens, R. E. Arvidson, D. A. Cremers, M. J. Ferris, J. D. Blacic, F. P. Seelos IV and K. S. Deal, “Combined remote mineralogical and elemental identification from rovers - Field and laboratory tests using reflectance and laser-induced breakdown spectroscopy” J. Geophys. Res. 107, 3 (2002). [CrossRef] [Google Scholar]
  9. B. C. Clark III, A. J. Castro, C. D. Rowe, A. K. Baird, H. J. Rose Jr., P. Toulmin III, R. P. Christian, W. C. Kelliher, K. Keil and G. R. Huss, “The Viking X ray fluorescence experiment - Analytical methods and early results” J. Geophys. Res. 82, 4577 (1977). [CrossRef] [Google Scholar]
  10. R. Rieder, T. Economou, H. Wanke, A. Turkevich, J. Crisp, J. Breckner, G. Dreibus and H. Y. McSween Jr, “The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode” Science 278, 1771 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  11. S. Maurice, R. Wiens, G. Manhès, D. Cremers, B. Barraclough, J. Bernardin, M. Bouyé, A. Cros, B. Dubois, E. Durand, S. Hahn, D. Kouach, J.-L. Lacour, D. Landis, T. Moore, L. Parès, J. Platzer, M. Saccoccio, B. Sallé and R. Whitaker, “ChemCam Instrument for the Mars Science Laboratory (MSL) Rover” 36th Annual Lunar and Planetary Science Conference 1735, (2005). [Google Scholar]
  12. G. Bazalgette Courrèges-Lacoste, B. Ahlers and F. Rull Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars” Spectrochim. Acta A, in press. [Google Scholar]
  13. R. S. Harmon, F. C. DeLucia; C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh and A. Miziolek, “Laser-induced breakdown spectroscopy – An emerging chemical sensor technology for realtime field-portable, geochemical, mineralogical, and environmental applications” Appl. Geochem. 21, 730 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  14. A. S. Eppler, A. D. Cremers, D. D. Hickmott, M. J Ferris and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy” Appl. Spectrosc. 50, 1175 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  15. F. Colao, R. Fantoni, V. Lazic and A. Paolini, “LIBS application for analyses of martian crust analogues: search for the optimal experimental parameters in air and CO2 atmosphere” Appl. Phys. A 79, 143 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. T. Hagan, H. B. Demuth and M. B. Beale, Neural Network Design, Boston, Mass (PWS Publishing, 1996). [Google Scholar]
  17. J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis” Anal. Bioanal. Chem. 385, 256 (2006). [CrossRef] [Google Scholar]
  18. J. B. Sirven, B. Bousquet, L. Canioni and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: Comparison of advanced chemometrics methods” Anal. Chem. 78, 1462 (2006). [CrossRef] [Google Scholar]
  19. G. R. Osinski, H. P. Schwarcz, J. Smith, M. R. Kleindienst, A. F. C. Haldemann, and C. S. Churche, “Evidence for a 100–200 ka meteorite impact in Western Egypt” Earth Planet. Sc. Lett. 253, 378 (2007). [CrossRef] [Google Scholar]
  20. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy” Appl. Phys. A, 53, 960 (1999). [Google Scholar]
  21. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere” Spectrochim. Acta B 61, 301 (2006). [CrossRef] [Google Scholar]
  22. F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli and A.Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: An analysis on Martian rock analogues” Planet. Space Sci. 52, 117 (2004). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.