Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
Article Number 08009
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2008.08009
Published online 19 February 2008
  1. M. Born and E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, UK, 1999). [CrossRef] [Google Scholar]
  2. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics”, Appl. Phys. Lett. 42, 492–494 (1983). [NASA ADS] [CrossRef] [Google Scholar]
  3. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations”, Appl. Optics 22, 3220–3228 (1983). [CrossRef] [Google Scholar]
  4. L. H. Cescato, E. Gluch, and N. Streibl, “Holographic quarter wave plates”, Appl. Optics 29, 3286–3290 (1990). [CrossRef] [Google Scholar]
  5. W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure”, Jpn. J. Appl. Phys. 43, L439–L441 (2004). [CrossRef] [Google Scholar]
  6. T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs and E.-B. Kley, “Diffractive optical isolator made of high-efficiency dielectric gratings only”, Appl. Optics 41, 3558–3566 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  7. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures”, Opt. Lett. 20, 2457–2459 (1995). [CrossRef] [Google Scholar]
  8. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 microns”, Appl. Optics 35, 6195–6202 (1996). [CrossRef] [Google Scholar]
  9. L. Pang, M. Nezhad, U. Levy, C.-H. Tsai, and Y. Fainman, “Form-birefringence structure fabrication in GaAs by use of SU-8 as a dry-etching mask”, Appl. Optics 44, 2377–2381 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures”, Jpn. J. Appl. Phys. 43, 5294–5296 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  11. J. Jahns, “Planar integration of free-space optical interconnects”, P. IEEE 82, 1623–1631 (1994). [CrossRef] [Google Scholar]
  12. T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light”, Opt. Express 15, 2067–2074 (2007). [CrossRef] [Google Scholar]
  13. K.-W. Chien and H.-P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination”, Appl. Opt. 43, 1830–1834 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  14. T. Levola, “Method and optical system for coupling light into a waveguide”, U.S. Patent 2005/0002611, Jan.6, 2005. [Google Scholar]
  15. C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams”, J. Mod. Optic. 40, 675–686 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  16. V. Kettunen and F. Wyrowski, “Reflection-mode phase retardation by dielectric gratings”, Opt. Commun. 158, 41–44 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  17. G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating”, J. Mod. Optic. 37, 1227–1232 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  18. S. J. Elston, G. P. Bryan-Brown, T. W. Preist, and J. R. Sambles, “Surface resonance polarization conversion mediated by broken surface symmetry”, Phys. Rev. B 44, 3483–3485 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  19. S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, “Polarization conversion from diffraction gratings”, Phys. Rev. B 44, 6393–6400 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  20. I. R. Hooper and J. R. Sambles, “Broadband polarization-converting mirror for the visible region of the spectrum”, Opt. Lett. 27, 2152–2154 (2002). [CrossRef] [Google Scholar]
  21. B. T. Hallam, C. R. Lawrence, I. R. Hooper, and J. R. Sambles, “Broad-band polarization convertion from a finite periodic structure in the microwave regime”, Appl. Phys. Lett. 84, 849–851 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  22. Y.-L. Kok and N. C. Gallagher, Jr., “Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating”, J. Opt. Soc. Am. A 40, 65–73 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  23. R. A. Watts and J. R. Sambles, “Reflection grating as polarization converters”, Opt. Commun. 140, 179–183 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  24. N. Passilly, K. Ventola, P. Karvinen, P. Laakkonen, J. Turunen, and J. Tervo, “Polarization conversion in conical diffraction by metallic and dielectric subwavelength gratings”, Appl. Optics 46, 4258–4265 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  25. R. A. Depine and M. L. Gigli, “Conversion between polarization states at the sinusoidal boundary of a uniaxial crystal”, Phys. Rev. B 49, 8437–8445 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  26. R. E. Inchaussandague and R. A. Depine, “Polarization conversion from diffraction gratings made of uniaxial crystals”, Phys. Rev. E 54, 2899–2911 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  27. S. R. Seshadri, “Polarization conversion by reflection in a thin-film grating”, J. Opt. Soc. Am. A 18, 1765–1776 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  28. N. Ouchani, D. Bria, B. Djafari-Rouhani, and A. Nougaoui, “Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal”, J. Opt. Soc. Am. A 24, 2710–2718 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  29. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings”, J. Mod. Optic. 40, 553–573 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  30. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures”, J. Opt. Soc. Am. A 13, 1870–1876 (1996). [Google Scholar]
  31. L. Li, “Note on the S-matrix propagation algorithm”, J. Opt. Soc. Am. A 20, 655–660 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  32. M. A. McCord and M. J. Rooks, “Electron beam lithography”, in Microlithography, P. Rai-Choudhury, ed. (SPIE Press, Bellingham, WA, 1997), Handbook of Microlithography, Micromachining, and Microfabrication, vol. 1, chap. 2. [Google Scholar]
  33. S. Astilean, P. Lalanne, P. Chavel, E. Cambril and H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633nm”, Opt. Lett. 23, 552–554 (1998). [CrossRef] [Google Scholar]
  34. P. Lalanne, S. Astilean, P. Chavel, E. Cambril and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff”, J. Opt. Soc. Am. A 16, 1143–1156 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  35. P. Lalanne, J. Hazart, P. Chavel, E. Cambril and H. Launois, “A transmission polarizing beam splitter grating”, J. Opt. A: Pure Appl. Opt. 1, 215–219 (1999). [CrossRef] [Google Scholar]
  36. N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection”, J. Opt. A: Pure Appl. Opt. 10, 015001 (2008). [CrossRef] [Google Scholar]
  37. J. L. Guo, “Nanoimprint lithography : Methods and material requirements”, Adv. Mater. 19, 495–513 (2007). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.