Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 2, 2007
|
|
---|---|---|
Article Number | 07023 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2007.07023 | |
Published online | 31 July 2007 |
- I. M. White, Z. Hongying, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and F. Xudong, “Refractometric sensors for lab-on-a-chip based on optical ring resonators” IEEE Sens. J. 7, 28–35 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules” Nature 442, 387–393 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics” Nature 442, 381–386 (2006). [CrossRef] [PubMed] [Google Scholar]
- M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice” Nature, 426, 421–424 (2003). [CrossRef] [PubMed] [Google Scholar]
- F. J. Duarte, ed., Tunable Lasers Handbook (Elsevier, Amsterdam, 1995). [Google Scholar]
- B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function” Science 312, 217–224 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003). [CrossRef] [Google Scholar]
- S. Balslev and A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments” Opt. Express 13, 344–351 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, “Realtime tunability of chip-based light source enabled by microfluidic mixing” J. Appl. Phys. 99, 23102:1–5 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing” Opt Lett. 29, 2007–2009 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers” Appl. Phys. Lett. 85, 2160–2162 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- F. Duarte and R. O. James, “Tunable solid-state lasers incorporating dye-doped, polymer-nanoparticle gain media” Opt. Lett. 28, 2088–2090 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, “New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers” Appl. Phys. B 75, 827–833 (2002). [CrossRef] [Google Scholar]
- M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, “Finite-element simulation of cavity modes in a microfluidic dye ring laser” J. Opt. A 8, 17–20 (2006). [CrossRef] [Google Scholar]
- H. El Rhaleb, N. Cella, J. P. Roger, D. Fournier, A. C. Boccara and A. Zuber, “Beam size and collimation effects in spectroscopic ellipsometry of transparent films with optical thickness inhomogeneity” Thin Solid Films 288, 125–131 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- http://www.microchem.com/products/su_eight.htm. [Google Scholar]
- E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, 2002). [Google Scholar]
- We emphasize that while for cavity modes that contain an even number of nodes the wave (by symmetry reasons) is symmetric about the horizontal axis, the waves with an odd number of nodes are not anti-symmetric about this line, but rather more complicated phase relations may arise. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.