Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 2, 2007
|
|
---|---|---|
Article Number | 07022 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.2971/jeos.2007.07022 | |
Published online | 27 July 2007 |
- S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha and H. A. Hatwater, “Plasmonics - A Route to Nanoscale Optical Devices” Adv. Mater. 13, 1501 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- C. Genet and T. W. Ebbesen, “Light in tiny holes” Nature 445, 39–46 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model” Nat. Phys. 2, 262–267 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwave-length aperture” Science 297, 820–822 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited” Phys. Rev. Lett. 94, 053901 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- N. Kuzmin, G. W. ’t Hooft, E. R. Eliel, G. Gbur, H. F. Schouten, T. D. Visser, “Enhancement of spatial coherence by surface plasmons” Opt. Lett. 32, 445–447 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- R. Gordon, “Near-field interference in a double slit in a perfect conductor” J. Opt. A: Pure Appl. Opt. 8, L1–L3 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- P. Lalanne, J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces” Nat. Phys. 2, 551–556 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, C. O’Dwyer, M. Sukharev and T. Seideman, “The response of nanostructured surfaces in the near field” Nat. Phys. 2, 792 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- P. Lalanne, J. P. Hugonin, M. Besbes and P. Bienstman, “Reply: The response of nanostructured surfaces in the near field” Nat. Phys. 2, 792–793 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Van Bladel, Singular Electromagnetic Fields and Sources, (D.G. Dubley, ed., IEEE Press, New York, 1991). [Google Scholar]
- M.G. Moharam, E. B. Grann, D. A. Pommet and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization” J. Opt. Soc. Am. A 13, 779–784 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [Google Scholar]
- E. Silberstein, P. Lalanne, J. P. Hugonin and Q. Cao, “On the use of grating theory in integrated optics” J. Opt. Soc. Am. A. 18, 2865–2875 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- J. P. Hugonin and P. Lalanne, “Perfectly-matched-layers as nonlinear coordinate transforms: a generalized formalization” J. Opt. Soc. Am. A. 22, 1844–1849 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- R. Pregla and W. Pascher, “The Method of Lines”, in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh, ed., 381–446, (J. Wiley Publ., New York, USA, 1989). [Google Scholar]
- R. Pregla, “MoL-BPM Method of Lines Based Beam Propagation Method”, in Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices (PIER 11), Progress in Electromagnetic Research, W.P. Huang, ed., 51–102, (EMW Publishing, Cambridge, Massachusetts, USA, 1995). [Google Scholar]
- R. Pregla and S. F. Helfert, “Modeling of Microwave devices with the method of lines”, in Recent Research developments in Microwave Theory & Techniques, B. Beker and Y. Chen, eEds., 145–196 (Research Signpost, Kerala, India, 2002). [Google Scholar]
- S. F. Helfert and R. Pregla, “The method of lines: a versatile tool for the analysis of waveguide structures” Electromagnetics 22, 615–637 (2002). [CrossRef] [Google Scholar]
- P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers” Optical and Quantum Electronics 33, 327–341 (2001). freely available from http://camfr.sourceforge.net. [CrossRef] [Google Scholar]
- W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates” Microw. Opt. Techn. Let. 7, 599–604 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media” IEEE T. Antenn. Propag. 14, 302–307 (1966). [CrossRef] [Google Scholar]
- A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (2nd edition, Artech House, Boston, MA, 2000). [Google Scholar]
- J. P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys. 114, 185–200 (1994). [CrossRef] [Google Scholar]
- Xiuhong Wei, “Three Dimensional Rigorous Model for Optical Scattering Problems” Ph.D. dissertation, Optics Research Group, Delft University of Technology, November 2006. [Google Scholar]
- X. Wei, H. P. Urbach, A. J. H. Wachters, “Finite Element Model for Three-Dimensional Optical Scattering Problems” J. Opt. Soc. Am. A 24, 866–881 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- A. Bossavit, “A rationale for edge-elements in 3D fields computations” IEEE T. Magn. 24, 74–79 (1988). [NASA ADS] [CrossRef] [Google Scholar]
- O. J. F. Martin, C. Girard and A. Dereux, “Generalized Field Propagator for Electromagnetic Scattering and Light Confinement” Phys. Rev. Lett. 74, 526–529 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- O. J. F. Martin, A. Dereux and C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape” J. Opt. Soc. Am. A 11, 1073–1080 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- A. S. van de Nes, J. J. M. Braat and S. F. Pereira, “High-density optical data storage” Rep. Prog. Phys. 69, 2323–2363 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- M. Paulus, P. Gay-Balmaz and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media” Phys. Rev. E 62, 5797–5807 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- C. Girard and A. Dereux, “Near-field optics theories” Rep. Prog. Phys. 59, 657–699 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- A. S. van de Nes, “Rigorous Electromagnetic Field Calculations for Advanced Optical Systems” Delft University of Technology, PhD thesis (2005). Available at: http://www.library.tudelft.nl/dissertations. [Google Scholar]
- E. Popov, M. Nevière, B. Gralak and G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings” J. Opt. Soc. Am. A. 19, 33–42 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- P. Lalanne, J. P. Hugonin and J. C. Rodier, “Theory of surface plasmon generation at nanoslit aperture” Phys. Rev. Lett. 95, 263902 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- L. Chen, J. T. Robinson and M. Lipson, “Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface” Opt. Express 14, 12629–36 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures” Phys. Rev. Lett. 98, 153902 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution” J. Opt. Soc. Am. A 16, 2510–2516 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- G. Granet and J. P. Plumey, “Parametric formulation of the Fourier Modal Method for crossed surface-relief gratings” J. Opt. A: Pure Appl. Opt. 4, S145–S149 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- T. Vallius and M. Honkanen, “Reformulation of the Fourier modal method with adaptive spatial resolution: application to multilevel gratings” Opt. Express 10, 24–34 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for TM polarization” J. Mod. Optic. 45, 1357–1374 (1998). [CrossRef] [Google Scholar]
- P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, K. Panajotov, “Modelling leaky photonic wires: a mode solver comparison” Opt. Quant. Electron. 38, 731–759 (2007). [CrossRef] [Google Scholar]
- J. A. Roden, S. D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media” Microw. Opt. Techn. Let. 27, 334 (2000). [CrossRef] [Google Scholar]
- M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, “High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media” IEEE J. Quantum Elect. 40, 175–182 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- G. Parent, D. Van Labeke and F. I. Baida, “Theoretical Study of Transient Phenomena in Near-Field Optics” J. Microscopy 202, 296–306 (2001). [CrossRef] [Google Scholar]
- F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metalic films” Opt. Commun. 209, 17–22 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- M. Sukharev, T. Seideman, “Coherent control approaches to light guidance in the nanoscale” J. Chem. Phys. 124, 144707 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, C. O’Dwyer, M. Sukharev, T. Seideman “Surface quality and surface waves on subwavelength-structured silver films” Phys. Rev. E 75, 016612 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Saad, Iterative methods for sparse linear systems, (2nd ed., Society for Industrial and Applied Mathematics, 2003). [CrossRef] [Google Scholar]
- J. L. Volakis, A. Chatterjee and L. C. Kempel, “Review of the finite-element method for three-dimensional electromagnetic scattering” J. Opt. Soc. Am. A 11, 1442–1454 (1994). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.