Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 2, 2024
Article Number 40
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2024043
Published online 25 November 2024
  1. Zolfaghari A, Chen T, Yi AY, Additive manufacturing of precision optics at micro and nanoscale, Int. J. Extreme Manuf. 1, 012005 (2019). [CrossRef] [Google Scholar]
  2. Heinrich A, 3D Printing of Optical Components, vol. 233, Springer Series in Optical Sciences (Springer International Publishing, Cham, 2021). [CrossRef] [Google Scholar]
  3. Aderneuer T, Fernández O, Ferrini R, Two-photon grayscale lithography for free-form micro-optical arrays, Opt. Exp. 29, 39511–39520 (2021). [NASA ADS] [CrossRef] [Google Scholar]
  4. Toulouse A, Drozella J, Motzfeld P, Fahrbach N, Aslani V, Thiele S, Giessen H, Herkommer AM, Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design, Opt. Exp. 30, 707–720 (2022). [NASA ADS] [CrossRef] [Google Scholar]
  5. Kubec A, Zdora M-C, Sanli UT, Diaz A, Vila-Comamala J, David C, An achromatic X-ray lens, Nature Commun. 13, 1305 (2022). [NASA ADS] [CrossRef] [Google Scholar]
  6. Blachowicz T, Ehrmann G, Ehrmann A, Optical elements from 3D printed polymers, e-Polymers 21, 549–565 (2021). [CrossRef] [Google Scholar]
  7. Roulet M, Atkins C, Hugot E, Snell R, Van de Vorst B, Morris K, Marcos M, Todd I, Miller C, Dufils J, Farkas S, Mezo G, Tenegi F, Vega-Moreno A, Schnelter H, Use of 3D printing in astronomical mirror fabrication, in: 3D Printed Optics and Additive Photonic Manufacturing II, vol. 11349:(SPIE, 2020), pp. 33–44. [Google Scholar]
  8. Zhang K, Qu H, Guan H, Zhang J, Zhang X, Xie X, Yan L, Wang C, Design and fabrication technology of metal mirrors based on additive manufacturing: a review, Appl. Sci. 11, 10630 (2021). [CrossRef] [Google Scholar]
  9. Chen X, Liu W, Dong B, Lee J, Ware HOT, Zhang HF, Sun C, High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm Surface roughness, Adv. Mater. 30, 1705683 (2018). [NASA ADS] [CrossRef] [Google Scholar]
  10. Delmans M, Haseloff J, Cube: A framework for 3D printable optomechanics, J. Open Hardware 2, 2 (2018). [CrossRef] [Google Scholar]
  11. Diederich B, Lachmann R, Carlstedt S, Marsikova B, Wang H, Uwurukundo X, Mosig AS, Heintzmann R, A versatile and customizable low-cost 3D-printed open standard for microscopic imaging, Nature Commun. 11, 5979 (2020). [NASA ADS] [CrossRef] [Google Scholar]
  12. Elías-García A, Hernandez-Martinez CA, Esqueda-Almanza R, Rojas-Santana A, Sánchez-Osorio I, Fast fabrication of optomechanical mounts using additive manufacturing, in: Optical Design and Fabrication 2021 (Optica Publishing Group, New York, 2021). [Google Scholar]
  13. Nuñez I, Matute T, Herrera R, Keymer J, Marzullo T, Rudge T, Federici F, Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering, PLoS ONE 12, e0187163 (2017). [CrossRef] [Google Scholar]
  14. Yang S, Tang Y, Zhao YF, A new part consolidation method to embrace the design freedom of additive manufacturing, J.Manufac. Process. 20, 444–449 (2015). [CrossRef] [Google Scholar]
  15. Alfaify A, Saleh M, Abdullah FM, Al-Ahmari AM, Design for additive manufacturing: a systematic review, Sustainability 12, 7936 (2020). [CrossRef] [Google Scholar]
  16. Praveena B, Lokesh L, Buradi A, Santhosh N, Praveena B, Vignesh R, A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends and future potential, Mater. Today: Proc. 52, 1309–1313 (2022). [CrossRef] [Google Scholar]
  17. Collins JT, Knapper J, Stirling J, Mduda J, Mkindi C, Mayagaya V, Mwakajinga GA, Nyakyi PT, Sanga VL, Carbery D, White L, Dale S, Lim ZJ, Baumberg JJ, Cicuta P, McDermott S, Vodenicharski B, Bowman R, Robotic microscopy for everyone: The OpenFlexure microscope, Biomed. Opt. Exp. 11, 2447–2460 (2020). [CrossRef] [Google Scholar]
  18. Rothermel F, Thiele S, Jung C, Giessen H, Herkommer A, Towards magnetically actuated 3D-printed micro-optical elements, in Optomechanics and Optical Alignment, vol. 11816:(SPIE, 2021), pp. 134–142. [Google Scholar]
  19. Kranert F, Hinkelmann M, Lachmayer R, Neumann J, Kracht D, Function-integrated laser system based on 3D-printed optomechanics, Components and packaging for laser systems VIII, vol. 11982 (SPIE, 2022), pp. 98–104. [Google Scholar]
  20. Erdil K, Gürcüoğlu O, Ferhanoğlu O, Electromagnetically actuated 3D-printed tunable optical slit device, Appl. Opt. 62, 5244–5250 (2023). [CrossRef] [Google Scholar]
  21. Li F, Macdonald NP, Guijt RM, Breadmore MC, Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing, Lab Chip. 19, 35–49 (2019). [CrossRef] [Google Scholar]
  22. Espera AH, Dizon JRC, Chen Q, Advincula RC, 3D-printing and advanced manufacturing for electronics, Prog. Add. Manuf. 4, 245–267 (2019). [CrossRef] [Google Scholar]
  23. Hai R, Shao G, Ware HOT, Jones EH, Sun C, 3D printing a low-cost miniature accommodating optical microscope, Adv. Mater. 35, 2208365 (2023). [NASA ADS] [CrossRef] [Google Scholar]
  24. Pfuhl P, Degünther M, Compensation of the position errors of optical elements by adapting their additively manufactured mounting structure, in Opt. Instrum. Sci. Technol. Appl. II, Vol. 11876 (SPIE, 2021), pp. 30–36. [Google Scholar]
  25. Schwertz KM, Burge JH, Field guide to optomechanical design and analysis, vol. FG26 (SPIE, Bellingham, WA, USA, 2012) [CrossRef] [Google Scholar]
  26. Yoder P, Vukobratovich D, Opto-mechanical systems design: design and analysis of opto-mechanical assemblies, Vol. 1 (Taylor & Francis/CRC Press, Boca Raton, 2015) [Google Scholar]
  27. Fischer RE, Tadic-Galeb B, Yoder PR, Optical System Design, 2nd edn. (McGraw-Hill, New York, 2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.