EOSAM 2023
Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
EOSAM 2023
Article Number 19
Number of page(s) 6
DOI https://doi.org/10.1051/jeos/2024017
Published online 24 May 2024
  1. Cossel K.C., Waxman E.M., Finneran I.A., Blake G.A., Ye J., Newbury N.R. (2017) Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited], J. Opt. Soc. Am. B 34, 1, 104–129. [NASA ADS] [CrossRef] [Google Scholar]
  2. Russell E., Corbett B., Gunning F.C.G. (2022) Gain-switched dual frequency comb at 2 μm, Opt. Express 30, 4, 5213–5221. [NASA ADS] [CrossRef] [Google Scholar]
  3. Parriaux A., Hammani K., Millot G. (2018) Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion, Commun. Phys. 1, 1, 1–7. [CrossRef] [Google Scholar]
  4. Cao W., Hagan D., Thomson D.J., Nedeljkovic M., Littlejohns C.G., Knights A., Alam S.-U., Wang J., Gardes F., Zhang W., Liu S., Li K., Rouifed M.S., Xin G., Wang W., Wang H., Reed G.T., Mashanovich G.Z. (2018) High-speed silicon modulators for the 2 μm wavelength band, Optica 5, 9, 1055–1062. [NASA ADS] [CrossRef] [Google Scholar]
  5. Gunning F., Corbett B. (2019) Time to open the 2-μm window?, Opt. Photonics News 30, 3, 42–47. [NASA ADS] [CrossRef] [Google Scholar]
  6. Dada A.C., Kaniewski J., Gawith C., Lavery M., Hadfield R.H., Faccio D., Clerici M. (2021) Near-maximal two-photon entanglement for optical quantum communication at 2.1 μm, Phys. Rev. Appl. 16, 5, L051005. [Google Scholar]
  7. Parriaux A., Hammani K., Millot G. (2020) Electro-optic frequency combs, Adv. Opt. Photonics 12, 1, 223–287. [NASA ADS] [CrossRef] [Google Scholar]
  8. Kayes M.I., Rochette M. (2017) Optical frequency comb generation with ultra-narrow spectral lines, Opt. Lett. 42, 14, 2718–2721. [NASA ADS] [CrossRef] [Google Scholar]
  9. Wu R., Supradeepa V.R., Long C.M., Leaird D.E., Weiner A.M. (2010) Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms, Opt. Lett. 35, 19, 3234–3236. [NASA ADS] [CrossRef] [Google Scholar]
  10. Washburn B.R., Diddams S.A., Newbury N.R., Nicholson J.W., Yan M.F., Jørgensen C.G. (2004) Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared, Opt. Lett. 29, 3, 250–252. [NASA ADS] [CrossRef] [Google Scholar]
  11. Cundiff S.T., Ye J. (2003) Colloquium: Femtosecond optical frequency combs, Rev. Mod. Phys. 75, 1, 325–342. [NASA ADS] [CrossRef] [Google Scholar]
  12. Del’Haye P., Schliesser A., Arcizet O., Wilken T., Holzwarth R., Kippenberg T.J. (2007) Optical frequency comb generation from a monolithic microresonator, Nature 450, 7173, 1214–1217. [CrossRef] [PubMed] [Google Scholar]
  13. Kippenberg T.J., Holzwarth R., Diddams S.A. (2011) Microresonator-based optical frequency combs, Science 332, 6029, 555–559. [NASA ADS] [CrossRef] [Google Scholar]
  14. Xing S., Kowligy A.S., Lesko D.M.B., Lind A.J., Diddams S.A. (2020) All-fiber frequency comb at 2 μm providing 1.4-cycle pulses, Opt. Lett. 45, 9, 2660–2663. [NASA ADS] [CrossRef] [Google Scholar]
  15. Wang X., Jia K., Chen M., Cheng S., Ni X., Guo J., Li Y., Liu H., Hao L., Ning J., Zhao G., Lv X., Huang S.-W., Xie Z., Zhu S.-N. (2022) 2 μm optical frequency comb generation via optical parametric oscillation from a lithium niobate optical superlattice box resonator, Photonics Res. 10, 2, 509–515. [CrossRef] [Google Scholar]
  16. Hu K., Kabakova I.V., Lefrancois S., Hudson D.D., He S., Eggleton B.J. (2014) Hybrid Brillouin/thulium multiwavelength fiber laser with switchable single- and double-Brillouin-frequency spacing, Opt. Express 22, 26, 31884–31892. [NASA ADS] [CrossRef] [Google Scholar]
  17. Zhao S., Lu P., Liu D., Zhang J. (2013) Switchable multiwavelength thulium-doped fiber ring lasers, Opt. Eng. 52, 8 086105. [NASA ADS] [CrossRef] [Google Scholar]
  18. Wang X., Zhu Y., Zhou P., Wang X., Xiao H., Si L. (2013) Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect, Opt. Express 21, 22, 25977–25984. [NASA ADS] [CrossRef] [Google Scholar]
  19. Peng W., Yan F., Li Q., Liu S., Feng T., Tan S. (2013) A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror, Laser Phys. Lett. 10, 11, 115102. [Google Scholar]
  20. Jiang S., Guo C., Fu H., Che K., Xu H., Cai Z. (2020) Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system, Opt. Express 28, 25, 38304–38316. [NASA ADS] [CrossRef] [Google Scholar]
  21. Fatome J., Pitois S., Fortier C., Kibler B., Finot C., Millot G., Courde C., Lintz M., Samain E. (2010) Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source, Opt. Commun. 283, 11, 2425–2429. [NASA ADS] [CrossRef] [Google Scholar]
  22. Wolff C., Smith M.J.A., Stiller B., Poulton C.G. (2021) Brillouin scattering – theory and experiment: tutorial, J. Opt. Soc. Am. B 38, 4, 1243–1269. [NASA ADS] [CrossRef] [Google Scholar]
  23. Li Q., Jia Z., Li Z., Yang Y., Xiao J., Chen S., Qin G., Huang Y., Qin W. (2017) Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity, AIP Adv. 7, 7, 075215. [NASA ADS] [CrossRef] [Google Scholar]
  24. Lucas E., Deroh M., Kibler B. (2023) Dynamic interplay between Kerr combs and Brillouin lasing in fiber cavities, Laser Photonics Rev. 17, 12, 2300041. [NASA ADS] [CrossRef] [Google Scholar]
  25. Bai Y., Zhang M., Shi Q., Ding S., Qin Y., Xie Z., Jiang X., Xiao M. (2021) Brillouin-Kerr soliton frequency combs in an optical microresonator, Phys. Rev. Lett. 126, 6 063901. [CrossRef] [PubMed] [Google Scholar]
  26. Deroh M., Beugnot J.-C., Hammani K., Finot C., Fatome J., Smektala F., Maillotte H., Sylvestre T., Kibler B. (2020) Comparative analysis of stimulated Brillouin scattering at 2 μm in various infrared glass-based optical fibers, J. Opt. Soc. Am. B 37, 12, 3792–3800. [CrossRef] [Google Scholar]
  27. Deroh M., Lucas E., Kibler B. (2023) Dispersion engineering in a Brillouin fiber laser cavity for Kerr frequency comb formation, Opt. Lett. 48, 24, 6388–6391. [NASA ADS] [CrossRef] [Google Scholar]
  28. Deroh M., Lucas E., Hammani K., Millot G., Kibler B. (2023) Stabilized single-frequency sub-kHz linewidth Brillouin fiber laser cavity operating at 1 μm, Appl. Opt. 62, 30, 8109–8114. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.