THz imaging
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
THz imaging
Article Number 22
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2024020
Published online 29 May 2024
  1. Appleby R., Anderton R.N. (2007) Millimeter-wave and submillimeter-wave imaging for security and surveillance, Proc. IEEE 95, 1683–1690. [CrossRef] [Google Scholar]
  2. Hu B.B., Nuss M.C. (1995) Imaging with terahertz waves, Opt. Lett. 20, 1716–1718. [NASA ADS] [CrossRef] [Google Scholar]
  3. Kampfrath T., Tanaka K., Nelson K.A. (2013) Resonant and nonresonant control over matter and light by intense terahertz transients, Opt. Lett. 7, 680–690. [Google Scholar]
  4. Lloyd-Hughes J., Jeon T.-I. (2012) A review of the terahertz conductivity of bulk and nano-materials, J. Infrared Millim. Terahertz Waves 33, 871–925. [NASA ADS] [CrossRef] [Google Scholar]
  5. Cooper K.B., Dengler R.J., Llombart N., Thomas B., Chattopadhyay G., Siegel P.H. (2011) THz imaging radar for standoff personnel screening, IEEE Trans. Terahertz Sci. Technol. 1, 169–182. [CrossRef] [Google Scholar]
  6. Kawase K., Hoshina H., Iwasaki A., Sasaki Y., Shibuya T. (2010) Mail screening applications of terahertz radiation, Electron. Lett. 46, 66–68. [Google Scholar]
  7. Tong H., Pei S., Jiang L., Zhu Y., Lin X. (2016) A low-power-consumption and high efficiency security system for automatic detection of concealed objects in human body, in 2016 Seventh International Green and Sustainable Computing Conference (IGSC), IEEE, pp. 1–5. [Google Scholar]
  8. Kemp M.C. (2007) Millimetre wave and terahertz technology for detection of concealed threats – a review, in: Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, IEEE, pp. 647–648. [Google Scholar]
  9. Am Weg C., von Spiegel W., Henneberger R., Zimmermann R., Loeffler T., Roskos H.G. (2011) THz imaging radar for standoff personnel screening, IEEE Trans. Terahertz Sci. Technol. 1, 169–182. [CrossRef] [Google Scholar]
  10. Tzydynzhapov G., Gusikhin P., Muravev V., Dremin A., Nefyodov Y., Kukushkin I. (2020) New real-time sub-terahertz security body scanner, J. Infrared Millim. Terahertz Waves 1–10. [Google Scholar]
  11. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M., Tsydynzhapov G.E., Nefyodov Y.A., Dremin A.A., Kukushkin I.V. (2020) New ultra-fast sub-terahertz linear scanner for postal security screening, J. Infrared Millim. Terahertz Waves 41, 655–664. [NASA ADS] [CrossRef] [Google Scholar]
  12. Sheen D.M., McMakin D.L., Hall T.E., Severtsen R.H. (2009) Active millimeter-wave standoff and portal imaging techniques for personnel screening, in: 2009 IEEE Conference on Technologies for Homeland Security, IEEE, pp. 440–447. [CrossRef] [Google Scholar]
  13. Chattopadhyay G., Cooper K.B., Dengler R., Bryllert T.E., Schlecht E., Skalare A., Mehdi I., Siege P.H. (2008) A 600 GHz imaging radar for contraband detection, in: Proc. 19th Int. Symp. Space Terahertz Technol, vol. 300. [Google Scholar]
  14. Golenkov A.G., Shevchik-Shekera A.V., Kovbasa M.Y., Lysiuk I.O., Vuichyk M.V., Korinets S.V., Bunchuk S.G., Dukhnin S.E., Reva V.P., Sizov F.F. (2021) THz linear array scanner in application to the real-time imaging and convolutional neural network recognition, Semicond. Phys. Quantum Electron. Optoelectron. 24, 90–99. [CrossRef] [Google Scholar]
  15. Grossman E.N., Gordan J., Novotny D., Chamberlin R. (2014) Terahertz active and passive imaging, in: The 8th European Conference on Antennas and Propagation (EuCAP 2014), IEEE, pp. 2221–2225. [CrossRef] [Google Scholar]
  16. Kleindienst R., Moeller L., Sinzinger S. (2010) Highly efficient refractive Gaussian-to-tophat beam shaper for compact terahertz imager, Appl. Opt. 49, 1757–1763. [NASA ADS] [CrossRef] [Google Scholar]
  17. Abbaszadeh A., Ahmadi-Boroujeni M., Tehranian A. (2019) Generating uniform irradiance in the Fresnel region by quasi-optical beam shaping of a millimeter-wave source, Opt. Express 27, 32135–32146. [NASA ADS] [CrossRef] [Google Scholar]
  18. Ye X., Xiang F., You C., Wang K., Yang Z., Liu J., Wang S. (2018) Generation of a terahertz collimated top-hat beam by using two thin diffractive phase plates, OSA Contin. 1, 1341–1348. [CrossRef] [Google Scholar]
  19. Perry D.L., Dereniak E.L., Sinzinger S. (1993) Linear theory of nonuniformity correction in infrared staring sensors, Opt. Eng. 32, 1854–1859. [NASA ADS] [CrossRef] [Google Scholar]
  20. Tendero Y., Landeau S., Gilles J. (2012) Non-uniformity correction of infrared images by midway equalization, Image Process. On Line 2, 134–146. [CrossRef] [Google Scholar]
  21. Cao B., Du Y., Xu D., Li H., Liu Q. (2015) An improved histogram matching algorithm for the removal of striping noise in optical remote sensing imagery, Optik 126, 4723–4730. [NASA ADS] [CrossRef] [Google Scholar]
  22. Dabov K., Foi A., Katkovnik V., Egiazarian K. (2007) Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process. 16, 2080–2095. [CrossRef] [Google Scholar]
  23. Wang E., Jiang P., Li X., Cao H. (2020) Non-uniformity correction of infrared images by midway equalization, J. Eur. Opt. Soc. Rapid Publ. 16, 1–12. [CrossRef] [Google Scholar]
  24. Cao Y., Yang M.Y., Tisse C.-L. (2015) Effective strip noise removal for low-textured infrared images based on 1-D guided filtering, IEEE Trans. Circuits Syst. Video Technol. 26, 2176–2188. [Google Scholar]
  25. Naganuma K., Ono S. (2022) A general destriping framework for remote sensing images using flatness constraint, IEEE Trans. Geosci. Remote Sens. 60, 1–16. [CrossRef] [Google Scholar]
  26. Huang Y., He C., Fang H., Wang X. (2016) Iteratively reweighted unidirectional variational model for stripe non-uniformity correction, Infrared Phys. Technol. 75, 107–116. [NASA ADS] [CrossRef] [Google Scholar]
  27. Shealy D.L., Hoffnagle J.A. (2006) Laser beam shaping profiles and propagation, Appl. Opt. 45, 5118–5131. [NASA ADS] [CrossRef] [Google Scholar]
  28. Dickey F.M. (2018) Laser beam shaping: theory and techniques, CRC Press. [CrossRef] [Google Scholar]
  29. Bezziou B., Lazoul M., Boutemedjet A., Garet F. (2023) Design and 3D printing of the Powell lens for sub-terahertz imaging, Appl. Opt. 62, 2899–2905. [NASA ADS] [CrossRef] [Google Scholar]
  30. Squires A.D., Lewis R.A. (2018) Feasibility and characterization of common and exotic filaments for use in 3D printed terahertz devices, J. Infrared Millim. Terahertz Waves 39, 614–635. [NASA ADS] [CrossRef] [Google Scholar]
  31. Rubin L.I., Osher S., Fatemi E. (1992) Nonlinear total variation based noise removal algorithms, Phys. D Nonlinear Phenom. 60, 259–268. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.