Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
|
|
---|---|---|
Article Number | 43 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/jeos/2023041 | |
Published online | 16 November 2023 |
- Ning X., Sun X., Chao W. (2019) Integration of star pixel coordinates and their time differential measurement in satellite stellar refraction navigation, Acta Astronaut. 159, 286–293. [NASA ADS] [CrossRef] [Google Scholar]
- Wang H., Wu S., Wang B., Yan Z., Yao S., Zeliu C. (2023) Near-infrared star map simulation for starlight refraction sensor based on ray tracing, Infrared Phys. Technol. 132, 104760. [NASA ADS] [CrossRef] [Google Scholar]
- Wu S., Wang H., Wang B. (2023) Construction of a backpropagation starlight atmospheric refraction model based on ray tracing, Appl. Opt. 62, 14, 3778–3787. [NASA ADS] [CrossRef] [Google Scholar]
- Anthony J. (1992) Air Force Phillips Laboratory autonomous space navigation experiment, in: AIAA, Space Programs and Technologies Conference, Huntsville, AL, March 24–27, 1992, 9 p. [Google Scholar]
- Wang D., Lv H., An X., Jie W. (2018) A high-accuracy constrained SINS/CNS tight integrated navigation for high-orbit automated transfer vehicles, Acta Astronaut. 151, 614–625. [NASA ADS] [CrossRef] [Google Scholar]
- Bertaux J.L., Kyrölä E., Fussen D., Hauchecorne A., Dalaudier F., Sofieva V., Fraisse R. (2010) Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT, Atmos. Chem. Phys. 10, 24, 12091–12148. [NASA ADS] [CrossRef] [Google Scholar]
- Wu Y., Zhang X., Zhang J., Wang L., Zeng F. (2015) Research on the autonomous star sensor based on indirectly sensing horizon and its optical design, Acta Optica Sinica 35, 266–275.. [Google Scholar]
- Xu L., Jiang J. (2018) The analysis for the influence of the refracted star detection, in: Presented at 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), pp. 1–8. [Google Scholar]
- Jiang J., Ma Y., Zhang G. (2020) Parameter optimization of a single-FOV-double-region celestial navigation system, Opt. Express 28, 17, 25149–25166. [NASA ADS] [CrossRef] [Google Scholar]
- Bai Y., Li J., Zha R., Wang Y., Lei G. (2020) Catadioptric optical system design of 15-magnitude star sensor with large entrance pupil diameter, Sensors 20, 19, 5501. [NASA ADS] [CrossRef] [Google Scholar]
- Dachs M., Parr A. (1970) Day/night shipborne test range star tracker (Shipborne day/night star tracker assisting Missile Guidance System monitoring in Atlantic and Pacific Missile Ranges), in: Electro-Optical System Design Conference, pp. 346–373. [Google Scholar]
- van Bezooijen R.W.H. (2003) SIRTF autonomous star tracker, in: IR Space telescopes and instruments, Vol. 4850, SPIE. [Google Scholar]
- Liao Z., Dong Z., Wang H., Mao X., Wang B., Wu S., Zang Y., Lu Y. (2022) Analysis of flow field aero-optical effects on the imaging by near-earth space all-time short-wave infrared star sensors, IEEE Sens. J. 22, 15, 15044–15053. [NASA ADS] [CrossRef] [Google Scholar]
- Poppi S., Pernechele C., Morsiani M., Roda J., Chiomento V., Giro E., Frigo A., Pisanu T., Righini S., Traverso L. (2007) An optical telescope to achieve a tracking and pointing model for radiotelescopes, http://www.ira.inaf.it/Library/rapp-int/399-07.pdf [Google Scholar]
- Nardell C.A., Wertz J., Hays P.B. (2005) Image processing, simulation and performance predictions for the MicroMak star tracker, Proc SPIE 5916, 59160U–59160U-12. [CrossRef] [Google Scholar]
- Wang B., Wang H., Mao X., Wu S., Liao Z., Zang Y. (2022) Optical system design method of near-Earth short-wave infrared star sensor, IEEE Sens. J. 22, 22, 22169–22178. [NASA ADS] [CrossRef] [Google Scholar]
- Asadnezhad M., Eslamimajd A., Hajghassem H. (2018) Optical system design of star sensor and stray light analysis, J. Eur. Opt. Soc. – Rapid Publ. 14, 1, 1–11. [CrossRef] [Google Scholar]
- Wang X., Xie J., Ma S. (2010) Starlight atmospheric refraction model for a continuous range of height, J. Guid. Control. Dynam. 33, 2, 634–637. [NASA ADS] [CrossRef] [Google Scholar]
- White R.L., Thurman S.W., Barnes F.A. (1985) Autonomous satellite navigation using observations of starlight atmospheric refraction, J. Navig. 32, 4, 317–333. [CrossRef] [Google Scholar]
- Wang H., Wu S., Ye Z., Zheng X., Sun S., Wang B., Zang Y., Zhang X. (2022) Research on joint calibration and compensation of the inclinometer installation and instrument errors in the celestial positioning system, J. Field Robot. 39, 7, 1151–1161. [CrossRef] [Google Scholar]
- Qian H.M., Sun L., Cai J.N., Huang W. (2014) A starlight refraction scheme with single star sensor used in autonomous satellite navigation system, Acta Astronaut. 96, 45–52. [NASA ADS] [CrossRef] [Google Scholar]
- Jiang J., Wang H., Zhang G. (2017) High-accuracy synchronous extraction algorithm of star and celestial body features for optical navigation sensor, IEEE Sens. J. 18, 2, 713–723. [Google Scholar]
- Berk A., Anderson G.P., Acharya P.K., Bernstein L.S., Muratov L., Lee J., Fox M., Adler S., Chetwynd J., Hoke M., Lockwood R., Gardner J., Cooley T., Borel C., Lewis P.E. (2005) MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update, Proc. SPIE 5806, 662–667. [NASA ADS] [CrossRef] [Google Scholar]
- Liebe C.C. (2002) Accuracy performance of star trackers-a tutorial, IEEE Trans. Aerospace Electron. Syst. 38, 2, 587–599. [CrossRef] [Google Scholar]
- Yanxiong W.U., Liping W.A.N.G. (2021) Optical system of star sensor with miniaturization and wide spectral band, J. Appl. Opt. 42, 5, 782–789. [CrossRef] [Google Scholar]
- Menduiña Fernández A. (2021) Measuring and calibrating non-common path aberrations in adaptive optics assisted image-slicer based spectrographs, Doctoral dissertation, University of Oxford. [Google Scholar]
- Ross F.E. (1935) Lens systems for correcting coma of mirrors, Astrophys. J. 81, 156. [NASA ADS] [CrossRef] [Google Scholar]
- Kent S., Bernstein R., Abbott T., Bigelow B., Brooks D., Doel P., Flaugher B., Gladders M., Walker A., Worswick S. (2006) Preliminary optical design for a 2.2 degree diameter prime focus corrector for the Blanco 4 meter telescope. Ground-based and Airborne Instrumentation for Astronomy, Proc. SPIE 6269, 626–937. [Google Scholar]
- Terebizh V.Y. (2016) On the capabilities of survey telescopes of moderate size, Astron. J. 152, 5, 121. [NASA ADS] [CrossRef] [Google Scholar]
- Li J., Lei G., Bai Y. (2020) Optical path design for catadioptric star sensor with large aperture, Acta Photonica Sinica 49, 6, 0611002. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.